
SUSAN: The Structural Similarity Random Walk Kernel

Janis Kalofolias◦ Pascal Welke• Jilles Vreeken◦

Abstract
Random walk kernels are a very flexible family of graph kernels,
in which we can incorporate edge and vertex similarities through
positive definite kernels. In this work we study the particular case
within this family in which the vertex kernel has bounded support.
We motivate this property as the configurable flexibility in terms
of vertex alignment between the two graphs on which the walk is
performed. We study several fast and intuitive ways to derive struc-
turally aware labels and combine them with such a vertex kernel,
which in turn is incorporated in the random walk kernel. We pro-
vide a fast algorithm to compute the resulting random walk kernel
and we give precise bounds on its computational complexity. We
show that this complexity always remains upper bounded by that
of alternative methods in the literature and study conditions under
which this advantage can be significantly higher. We evaluate the
resulting configurations on their predictive performance on several
families of graphs and show significant improvements against the
vanilla random walk kernel and other competing algorithms.
Keywords: random walk kernel, band-limited kernel

1 Introduction
Through the choice of an appropriate graph kernel one can
harness the power of generic machine learning methods to
learn functions over graphs. Graph kernels are positive
(semi-)definite functions on pairs of graphs, and are most
often defined as R-convolutions [6]. These can be seen as
an extension of the notion of convolution that operates on
kernels defined on sub-structures of these graphs, and in a
way that preserves the positive-definiteness of those kernels.
Random walks have been among the first such formulations
[5], and through their more recent generalisations [20] they
still remain relevant for certain configurations [9].

Intuitively, given an alignment φ between the vertices
of one graph to those of another, one can count the number
of simultaneous random walks between the two graphs.
These are random walks performed on two graphs, starting
from one vertex in one graph and one vertex in the other;
then they advance the vertex of each graph one edge at
a time in lockstep, so that at each step the vertices of
two graphs respect the given alignment φ. Of course, in
general such an alignment is not available. The random walk
kernels avoid the dependency on any one particular mapping
between the vertices of two graphs by instead considering all
simultaneous walks over all possible alignments between the
vertices of the one graph to those of the other.

◦CISPA Helmholtz Center for Information Security, Germany
{janis.kalofolias,jv}@cispa.de

•University of Bonn, welke@cs.uni-bonn.de

The number of all such walks can be elegantly formu-
lated in terms of linear-algebraic operations, thus allowing
the use of a variety of algorithms for its computation, while
being very flexible: they allow to incorporate arbitrary dis-
tributions over the vertices of the graphs as starting and stop-
ping points of the walks, different weights for different walk
lengths, node and edge similarities encoded as kernels, as
well as the possibility to incorporate edge labels [20]. This
allows, for example, to down-weigh vertex alignments in the
random walks between vertices that we know (or strongly
suspect) to be dissimilar.

Recent work [14, 16, 18] suggests that (non-random-
walk) kernels that align vertices based on structural proper-
ties improve predictive performance on several datasets. Ex-
amples of such properties are the coreness of vertices, vertex
degree, or Weisfeiler-Lehman labels. In these cases, vertices
with the same or similar value share a similar structure and
should arguably be aligned in a random walk kernel using a
suitable kernel on structural property values.

In our work we focus on the case that very dissimilar
vertices are not just down–weighed, but are not allowed to
be simultaneously visited by a random walk at all. Assum-
ing that a good estimation of vertex similarity was available
then one would expect that the count of walks that respect
such vertex alignments would preserve or improve the accu-
racy of the walk, while the other walks might be considered
noise. In many cases this results in more fine grained simi-
larity functions that give high similarity to graphs that have
many simultaneous random walks that respect structure, e.g.,
simultaneously travelling through similarly dense regions.

Consider the two small graphs G,H in Fig. 1. Assume
we know that vertices with label 1 are dissimilar to label
3 vertices, but those with label 2 are somewhat similar to
both. The vanilla random walk kernel would consider the full
product graph in Fig. 1c, modelling vertex alignment using
a kernel function on vertices. On the other hand, the actual
information that is relevant in this scenario is represented by
the much smaller product graph of Fig. 1b, while considering
only identically labelled vertices as matches (Fig. 1a) would
arguably lose too much information.

We thus capture this assumption as a restriction of the al-
lowed alignment during the simultaneous walk, and encode
this as a vertex kernel of bounded support on structure-aware
ordinal labels, which can be extracted, for instance, from
structural properties of the vertices. For the resulting ran-

Copyright © 2021
Copyright for this paper is retained by authors

H H H

G

(a) (b) (c)

Figure 1: Two small graphs G,H with structural labels 1,
2, 3 indicated as colours. Considering only vertex pairs
of identical labels as in (a) arguably [5] results in too
sparse product graphs. The product graph (c) considered
by the generic random walk kernel [20] includes all pairs
of vertices. Our proposed kernel may disallow the mapping
of label 1 to 3 and can then be computed on (b).

dom walk kernel, we present a computational method that is
practically and asymptotically faster than alternative compu-
tational methods. This superiority increases as we enforce
stricter assumptions and only allow alignments of closer la-
bels. In practice, this restriction formally corresponds to us-
ing a vertex kernel with a smaller support. If (almost) com-
plete alignment information is available, such as, for exam-
ple in brain activity networks [15], our method can be com-
puted in up to quadratic time, in contrast to the cubic time
of the generalised framework. This further improves accord-
ingly when using sparse graph representations.

Our contributions are as follows:
• We propose a fast algorithm to compute random walk

kernels based on bounded support vertex kernels.
• We thus study the gap between the rather restrictive

choice of Gärtner et al. [5] and the general framework
of Vishwanathan et al. [20].

• We describe a class of bounded support vertex kernels
for integer-valued structural attributes and

• study the performance of several such attributes when
used within our framework.

• We empirically show significant improvements on some
datasets, while generally being on par with the vanilla
random walk kernel.

Although we present our work as a stand-alone kernel,
perhaps a more important goal is to show that even for
datasets on which we do not outperform the vanilla kernel
in terms of accuracy, we still attain shorter running time.
Additionally, our work can also improve state-of-the-art
kernels that use random walks as a component [13]. For
conciseness we postpone the proofs to the online appendix.1

1https://eda.mmci.uni-saarland.de/susan

2 Preliminaries
We begin with an overview of the necessary concepts that
we make use of in our analysis and introduce the relevant
notation. For conciseness we first define [n] := {1, . . . , n}
to be the set of the first n positive naturals. We additionally
define [n]0 := {0, 1, . . . , n}.

In this work we consider undirected graphsG = (V,E).
The set of edges can also be represented as the adjacency
matrix A ∈ Rn×n, which has entries [A]i,j equal to 1
if (vi, vj) ∈ E, or 0 otherwise, where we assume a fixed
ordering v1, . . . , vn of V . To describe edge-weighted graphs
we straightforwardly replace the adjacency matrix with its
weighted version. Since G is undirected, the adjacency
matrix is symmetric: A = A>. For two matrices A′ ∈
Rn′×m′

and A′′ ∈ Rn′′×m′′
, we write their Kronecker

product as A′⊗A′′ ∈ Rn′n′′×m′m′′
; similarly, for A′,A′′ ∈

Rn×m we denote their Hadamard product as A′ ◦ A′′ ∈
Rn×m. In the following analysis we generally consider a
pair of graphs, G′ and G′′, in which case we implicitly refer
to property p of the first graph as p′ and of the second as p′′.

2.1 The Random Walk kernel The basic random walk
kernel applied on two graphs G′ = (V ′, E′) and G′′ =
(V ′′, E′′) is equal to the number of simultaneous walks
between them. More precisely, assume a mapping φ :
V ′ → V ′′ between the nodes of the two graphs; then a
simultaneous walk would only be allowed to traverse an edge
e = (u′, v′) ∈ E′ if an edge also exists in G′′ between
the mapped vertices of it (φu′ , φv′) ∈ E′′. Equivalently,
we could visualise such a walk as one over the graph Gφ
with vertices (u′, φu′) for all u′ ∈ V ′ and edges Eφ :={(

(u, v), (φu′ , φv′)
)
| (u′, v′) ∈ E′ ∧ (φu′ , φv′) ∈ E′′

}
.

The random walk kernel avoids the dependency on
any one particular such mapping φ. Instead, it consid-
ers all possible mappings by performing a simultaneous
walk on the graph with vertices the Cartesian product
V× := V ′ × V ′′ and edges the union E× :=

⋃
φEφ :=

{((u′, u′′), (v′, v′′)) | (u′, v′) ∈ E′ ∧ (u′′, v′′) ∈ E′′} over
all possible vertex mappings. This results in the direct
product graph G× := (V×, E×). A walk on G× is equivalent
to a simultaneous walk on graphs G′ and G′′. Indeed,
consider advancing a walk on G× from node (u′, u′′) ∈ V×:
we can interpret this as first randomly selecting a mapping φ
which i) respects the current node φu′ = u′′, and for which
ii) Eφ contains at least one edge with an endpoint (u′, u′′);
then traversing one of these edges from Eφ at random. In
this work, we down-weight or outright exclude certain such
alignments φ.

The adjacency matrix A× of G× is equal to the Kro-
necker product of the adjacency matrices of G′ and G′′ [21].
That is: A× = A′ ⊗ A′′. Additionally, the ν-th power of
the adjacency matrix Aν of a graph contains in its element
[Aν]i,j the number of walks with exactly ν steps from the

Copyright © 2021
Copyright for this paper is retained by authors

https://eda.mmci.uni-saarland.de/susan

i-th to the j-th vertex of the graph. Hence, the number of all
such walks can be written as e>Aν

×e, where e = (1, . . . , 1)>

is the vector of all ones. The random walk kernel that counts
all simultaneous random walks is thus defined as

k(G′, G′′) =

∞∑
ν=0

µνe
>Aν
×e ,(2.1)

where the constants µν ensure the series converges [5].
The choice of the sequence µ gives rise to two special

cases that allow the analytic computation of the series in
Eq. (2.1). The geometric sequence µgeom(ν) := λν defines
the geometric random walk kernel, while the power series
coefficients of the exponential function µexp(ν) := 1/ν!
define the exponential one. Using symbolic forms these are

kgeom(G′, G′′) := e>(I − λA×)−1e and

kexp(G
′, G′′) := e>exp (λA×) e ,

(2.2)

where in the former λ takes any value small enough so
that ‖λA×‖ < 1, as necessary for the geometric series to
converge, while in the latter it is a positive parameter.

The random walk kernel of Eq. (2.1) as proposed by
Gärtner et al. [5] has been extended or adapted in several
ways. Borgwardt et al. [3] use a kernel on vertices and
edges to define the edge similarities of the direct product
graph. Additionally, the random walk can be equipped with
starting/ending probabilities and weighted matrices. These
all fit in the framework [20]

k(G′, G′′) =

∞∑
ν=0

µ(ν)q>Wν
×p ,(2.3)

where p = p′ ⊗ p′′ and q = q′ ⊗ q′′ are start and
stop probabilities on vertices and W× contains generalised
edge similarities, as computed by a kernel between the
edges of the two graphs. These generalisations can now be
incorporated in the analytic expressions of Eq. (2.2)

kgeom(G′, G′′) := q>(I− λW×)−1p and

kexp(G
′, G′′) := q>exp (λW×)p ,

(2.4)

where the parameter λ plays a similar role as in Eq. (2.2).
Now, the formulation of Eq. (2.3) & (2.4) allows for a vertex
kernel that encodes the similarity of vertex combinations in
the generalised edge similarities.

2.1.1 Computation In theory, the geometric and exponen-
tial kernels of Eq. (2.1) can be computed by solving a lin-
ear system and computing a matrix exponential, respectively,
each of which operate on a matrix that is easily derived from
A× = A′ ⊗ A′′. In practice, however, both these opera-
tions are cubic in general, and since W× ∈ Rn′n′′×n′n′′

,
they would require an excessive computation of O(n6).

To this end Vishwanathan et al. [19] note that the
spectral decomposition of A× can be efficiently computed
as S×D×S>×= (S′ ⊗ S′′)(D′ ⊗D′′)(S′ ⊗ S′′)>. This allows
one to compute Eq. (2.2) as q>S×

(∑νmax

ν=0 µ(ν)D
ν
×
)
S>×p,

where the—otherwise cubic—operation need only operate
on the diagonal matrix D×. As an additional benefit, the
spectral decomposition of each adjacency matrix may only
be computed once for all graph pairs; then the entire Gram
matrix needs only O(n2m2νmax +mn3) time for m graphs.

Alternatively, the same work used the Conjugate Gradi-
ent iterative solver to compute kgeom of Eq. (2.2). Each it-
eration performs a matrix-vector operation with a Kronecker
matrix by employing the identity

(A′ ⊗A′′)x = vec(A′′mat(x)A′>) ,(2.5)

where the operation vec : Rm×n → Rmn creates a vector
by concatenating all columns of a matrix and mat : Rmn →
Rm×n is the inverse operation. Using this identity within
iterative methods requires O

(
n3k

)
computations per kernel

entry, assuming k iterations.
However, when a vertex or an edge kernel is used, as

in the general framework of Eq. (2.3), the matrix W× does
not have a Kronecker decomposition. Then, these and other
proposed methods are not applicable any more, and iterative
methods must be used, which are based on repeated matrix-
vector operations. These methods also allow using an edge
kernel as long as it has a known feature representation on
a finite d-dimensional Hilbert space [20]; the matrix-vector
operation is then performed on each of the d dimensions of
feature vectors, which needs O

(
n3d
)

computations.
As a workaround, the resulting similarity matrix can be

approximated by its nearest Kronecker product, although not
without downsides: the additional complexity of a rank-1
singular value decomposition on the full matrix [10], as well
as the potential of arbitrary quality degradation due to the
involved approximation.

2.2 Graph Concepts We now introduce the graph core-
ness, a structural property that will be used in our ker-
nel. For a vertex v we denote its neighbours as N(v) :=
{u ∈ V | (u, v) ∈ E} and its degree, i.e., the number of its
neighbours, by δ(v) := |N(v)|.

The induced subgraph G[U] := (U, {(u, v) ∈ E |
u, v ∈ U}) of a vertex subset U ⊆ V is the subgraph of
G with vertices U and those edges of E with both endpoints
in U . We also denote δU (u) the degree of vertex u in G[U].

A k-core component of a graph G is an (inclusion-
wise) maximal connected subgraph of G whose vertices U
have all a degree of at least δU (u) ≥ k. The subgraph
comprising all k-core components of this graph is its k-core
H(k), with vertices the set V(k). Hence, H(k) := G[V(k)].

The annotated k-cores of the example graph in Fig. 2
show that the k-cores are nested to form a hierarchy over the

Copyright © 2021
Copyright for this paper is retained by authors

k-core

k-core component

H(0)

H(1)

H(2)

H(3)

H(4)

Figure 2: The core decomposition of a graph defines a
partitioning of its vertices into named groups, its k-shells,
that contain vertices with similar connectedness.

vertices. We also define the k-shell ofG as the set of vertices
that lie in the k-core but not in the k+1-core (same-coloured
vertices in the figure). In this way, the k-shells define a
partitioning over the vertices: the core decomposition of
G, κG : V → [κ]0, which assigns to each vector v its
core number (or coreness) κG(v) := {k | v ∈ V(k)}. The
maximum core value of all vertices in the graph is called its
degeneracy κ := maxv∈V κG(v).

3 Structure-Aware Vertex Similarities
We now introduce the main object of our study: a random
walk kernel that uses a vertex kernel based on structural
attributes of the vertices, namely their degree or coreness.
This vertex kernel can be combined with any other vertex
kernel and/or an edge kernel, thus remaining fully flexibile.

The reason underlying our use of structural graph prop-
erties is twofold. On the one hand, vertex labels on graphs
might be unavailable, or unsuitable as a basis for vertex
alignment. For example, the number of joint walks between
the graphs can deviate detrimentally for noisy labels, espe-
cially when “hub”-vertices of one graph are mislabelled. Ad-
ditionally, it can be difficult to evaluate the similarity of ver-
tices based on labels beyond testing for label equality, e.g.,
when these are categorical, often retaining too little informa-
tion [5]. In contrast, many structural vertex properties, such
as coreness, allow for a natural way to compare vertices with
unequal but similar values, since a similar value indicates a
similarly robust connection or “centrality” in a graph [7, 17].
Using structural properties as vertex labels allows the use of
a multitude of available kernels on scalars for the evaluation
of vertex similarity. Choosing a smoother amongst them al-
lows for greater resilience against edge or label noise,2 while
retaining the discriminating potential of these labels.

This extension can be incorporated in the random walk
kernel of Eq. (2.3) by using as edge weight matrix W×
the values of the kernel kE : V ′2 × V ′′2 → R on any
pair of edges (u′, v′) and (u′′, v′′) with u′, v′ ∈ V ′ and

2There are some graph classes and perturbation models for which this
seems necessary if the structural similarity is defined by coreness [1].

u′′, v′′ ∈ V ′′. Let n′ = |V ′|. We can now formally write

[W×](i−1)n′+r,(j−1)n′+s = kE
(
(v′i, v

′
j), (v

′′
r , v
′′
s)) ,

where the edge similarity kernel kE can be defined as

kE
(
(u′, v′), (u′′, v′′)) :=

kadj
(
(u′, v′), (u′′, v′′)

)
kstruc(u

′, u′′)kstruc(v
′, v′′) .

Here, kadj is a kernel on graph edges and kstruc the
structurally-aware vertex similarity kernel. In place of kadj
we can use any kernel subject to the constraints of Sec. 2.1.1:
one with a known and low-dimensional representation. Nev-
ertheless, for the sake of simplicity, we use the linear kernel
on the graph adjacency entries; then the Gram matrix of this
kernel becomes equal to the Kronecker product of the two
adjacency matrices

kadj
(
(v′i, v

′
j), (v

′′
r , v
′′
s)
)
:= [A′]i,j [A

′′]r,s ,

Kadj =A′ ⊗A′′

Without loss of generality, we can consider the structural
vertex kernel kstruc as a kernel katt over the image of a
feature map lG : V → X that extracts structure-aware
properties from the vertices of each graph, i.e.,

kstruc(v
′, v′′) := katt

(
lG′(v′) , lG′′(v′′)

)
.

As its Gramian goes over all pairs V ′ × V ′′, it is rank 1:

Kstruc = kk> , with
[k](i−1)n′−r := kstruc(v

′
i, v
′′
r) .(3.6)

Finally, the edge similarity matrix can be written as

W× = (A′ ⊗A′′) ◦Kstruc .(3.7)

Importantly, the above formulations allow us to adapt
the identity of Eq. (2.5) for our kernel.

LEMMA 3.1. The matrix-vector operation of the edge sim-
ilarity matrix of Eq. (3.7) can be computed in O(n′2n′′ +
n′n′′2) as

W×x = vec
[
T ◦

(
A′′
(
T ◦mat[x]

)
A′′>

)]
,(3.8)

where T := mat[k] is the matricisation of Eq. (3.6).

For greater insight, we note that the matrix T can be
regarded as the lower off-diagonal block of the vertex kernel
Gramian, as applied on the concatenation of the vertices of
the two graphs [v′1, . . . , v

′
n′ , v′′1 , . . . , v

′′
n′′].

[T]i,j = kstruc(v
′′
i , v
′
j) = katt

(
lG′′(v′′i) , lG′

(
v′j
))

.

When the involved vertices are not considered similar ac-
cording to kstruc this matrix becomes sparse; then we can
study the zeros of this matrix to avoid parts of the matrix-
vector computations K̃I · x that do not affect the final result.

Copyright © 2021
Copyright for this paper is retained by authors

COROLLARY 3.1. Let at most τ pairs (v′, v′′)
have a non-zero similarity according to kstruc, i.e.,
|{(v′, v′′) ∈ V ′ × V ′′ | kstruc(v′, v′′) 6= 0}| = τ ≤ n′n′′.
Then the matrix-vector operation of Eq. (3.8) can be
computed in O

(
(n′ + n′′) τ

)
.

A special instance of the above arises when the struc-
tural attributes extracted from the graph vertices lie on a set
of discrete scalars, and since lG can be an arbitrary func-
tion, we can assume without any loss of generality that
lG ∈ {1, . . . , L} ≡ [L]. Particular interest lies in the case
when we use an integer kernel katt that is of bounded sup-
port, i.e., when there exists a δ ≥ 0 such that katt(i, j) = 0
for all |i− j| > δ. This threshold δ is the kernel bandwidth.

We hence call Structural Similarity random walk
(SUSAN) the random walk kernel that uses as vertex kernel
kstruc a bounded support kernel katt over integer-valued
structural attributes derived from the vertices of each graph

kstruc(v
′, v′′) = katt

(
lG′(v′) , lG′′(v′′)

)
kv(v

′, v′′) ,(3.9)

where kv is either a pre-existing vertex kernel to be incorpo-
rated or the identity function, if so preferred. The resulting
kernel remains both positive-definite and of bounded sup-
port. Due to its last property the kernel considers only po-
tentially beneficial relations, while gaining special structure
that enables a significantly more efficient computation.

We now study the useful structure of SUSAN and anal-
yse its computational complexity. First, and without loss of
generality, we assume the rows and columns of each adja-
cency matrix to be arranged so that they correspond to ver-
tices in increasing order of lG(v). This gives rise to the block
representation of the adjacency matrix A of graph G as

A =

A1,1 · · · A1,L

...
. . .

...
AL,1 · · · AL,L

 ,

where each block Ai,j contains the (possibly empty) block
of all edges (u, v) from vertices with lG(u) = i to those
with lG(v) = j, and L is the maximal value of lG. It will
be of help to define the size of each block as Ai,j ∈ Rbi×bj ,
where bi := |{u ∈ V | lG(v) = i}|. We can now compute
the exact number of non-zero elements τ of T, by observing
that this matrix becomes a banded block matrix with block-
bandwidth δ, and whose each block has equal elements.

LEMMA 3.2. The matrix-vector operation W×x for the SU-
SAN kernel whose vertex kernel has a bounded support with
bandwidth δ can be computed in exactly

c = (2n′+2n′′+1)

κ′∑
i=0

b′i

min(κ′′,i+δ)∑
j=max(0,λ−δ)

b′′j − n′n′′(3.10)

floating point operations, which is O
(
(δ + 1)(n′ + n′′)B2

)
,

for B the maximal size among all b′k, b′′k . In contrast, a naı̈ve
computation requires 2n′n′′(n′ + n′′) such operations.

3.1 Selection of the Structural Attribute Although
within the context of the SUSAN kernel we can plug in
any integral structural attribute, the greatest efficiency comes
with small bandwidths. For this reason, two natural such
properties arise as particularly helpful: the vertex degree and
its coreness, which can both be computed at virtually no cost.

As a side-note, the choice of the vertex kernel may
also affect the matrix-vector complexity c. By using the
vertex degree, a bound on the non-zero entries of each
adjacency matrix row also arises, given the degree that each
block belongs to. Combined with the bound for the non-
zeros of the matrix T, we can replace the innermost sum
in Eq. (3.10) with

∑min(L′′,i+δ)
j=max(0,i−δ) min(i, bi). In the case

of coreness the quantity c can be bounded from below as
c ∈ o

(
(n′+n′′)

√
n′
√
n′′)
)
, even with a bandwidth of δ = 0,

since there always exists a k-shell with at least
√
n′ vertices

in any simple graph G′ (see online appendix).

3.2 Selection of the Attribute Kernel Note that, in order
to ensure positive definiteness for the SUSAN kernel, all its
constituents must also be positive definite, and therefore also
katt. We hence define a class of bounded support positive
definite kernels that can be used in the role of katt, to assess
the similarity of integer-valued structural vertex properties.

To fully specify katt as a positive definite kernel it is suf-
ficient to define its feature mapping φ on some Hilbert space.
For a given bandwidth δ and an arbitrary shape vector s ∈
Rbδ/2c+1 we can define such a feature map φδs : Z → Rω ,
whose image contains (countably) infinite-dimensional ele-
ments with indices λ = . . . ,−3/2,−1,−1/2, 0,1/2, 1, 3/2, . . .:

[φδs(i)]λ :=

 sd|i−λ|e 2|i− λ| ≤ δ, δ odd, 2λ odd
s|i−λ|+1 2|i− λ| ≤ δ, δ even, λ ∈ Z
0 otherwise .

The image of φδs is a (countably) infinite-dimensional vector
space that becomes Hilbert through the natural inner product.
Thus, a positive definite kernel katt over Z can be defined as

katt(i, j) :=〈φδs(i) , φδs(j)〉Rω :=
∞∑

λ=−∞

[φδs(i)]λ · [φδs(j)]λ ,

(3.11)

and can be easily verified that it has bounded support with
bandwidth δ. Additionally, it also belongs to the class of
shift invariant kernels; i.e., its value only depends on the
difference of its entries: katt(i, j) = katt(|i− j|), where we
slightly abused notation. Since we assume that the structural
properties are captured as an integer by the structural labels

Copyright © 2021
Copyright for this paper is retained by authors

lG, shift-invariance is a natural property that avoids making
any further assumptions on these structural properties.

Note that not all shift-invariant bounded support func-
tions are positive definite, but any function in the form of
Eq. (3.11) is. Out of these, arguably the simplest one arises
when s is the constant vector with elements si = 1√

δ+1
. This

choice yields the kernel whose graph resembles a triangle

katt(i, j) = max
(
0, 1− |i− j|

δ + 1

)
,

and is also the one we adopt to complete Eq. (3.9).

3.3 Computation of SUSAN Among the contributions of
this work is a proof-of-concept implementation of the main
BLAS3 components of the matrix-vector operation W×x of
the SUSAN. This implementation uses the key observation
formalised in Lemma 3.2, and therefore has a complexity
that is upper bounded by that of its naı̈ve computation.

We recall from Sec. 2.1.1 that fast algorithms are avail-
able for the vanilla random walk kernel. However, when us-
ing a vertex and/or edge kernels, like in the case of SUSAN,
these methods cannot be applied, since the similarity matrix
W× does not have a Kronecker decomposition. Then itera-
tive methods have to be used, all of which rely on an efficient
computation of the matrix-vector operation W×x.

We complete the work of [20] by applying the iterative
method of Al Mohy et al. [2] to compute the exponential
version of SUSAN. This method involves a truncated Taylor
expansion, in which the order is computed for the required
accuracy based on a bound on the norms of the matrix. We
empirically study the convergence of this method in Sec. 4.1.

With this we establish that both practical algorithms for
the computation of the SUSAN kernel benefit from a more
efficient implementation of this matrix-vector operation.

Note that an additional advantage of our algorithm is
that it only needs to store the τ elements of the x vector.
This not only improves the cache locality of the data during
computation, especially in the case of small δ, but can also
improve the convergence of the used solver (c.f., Sec. 4.1).

4 Experiments
We now evaluate our proposed algorithm to compute the
random walk kernel for bounded-support vertex kernels, as
well as the utility of several structural similarity measures
within this framework. In particular, we consider coreness,
vertex degrees, and application specific structural vertex
similarities. SUSAN is implemented3 in C++ and Python.

As an example of data with application specific vertex
similarities, we use three brain connectome datasets [15]:
these represent connections between brain regions (as ver-
tices) that are consistently labelled by integers across pa-

3Available at https://eda.mmci.uni-saarland.de/susan

tients. Furthermore, close-by labels indicate functional prox-
imity4. These, as well as the other datasets considered below
are publicly available at Morris et al. [12].

4.1 Efficiency To evaluate the theoretical advantage of our
implementation on real-world datasets, we first compare our
algorithm for computing SUSAN against a random walk ker-
nel with a vertex kernel of unbounded support. To this end,
we compute the vanilla random walk kernel with an appro-
priate iterative method for each kernel kind (see Sec. 3.3),
as the faster methods of [20] are then inapplicable. We
hence attain an implementation-independent measurement
by comparing the time required to compute SUSAN using
the same implementation for both our algorithm and the
baseline matrix-vector operation. For simplicity, and since
the matrices of these datasets are of small dimension, we as-
sume full matrix storage. We do note, however, that highly
optimised implementations of the baseline matrix–vector op-
eration (MVO) could outperform our proof-of-concept algo-
rithm in certain hardware, despite its theoretical superiority.

On each brain connectome dataset, and for an increasing
bandwidth parameter δ, we use the iterative schemes of
Sec. 3.3 to compute both the exponential and the geometric
SUSAN kernels. In the top row of Fig. 3 we compare the
elapsed wall-clock time when using our proof-of-concept
implementation of the matrix-vector product against the
baseline computation to compute the same kernel. We see
that for both kernels and for small bandwidths a speedup of
up to an order of magnitude is attained; with increasing δ the
runtime slows down to that of the naı̈ve algorithm.

Although the key contributing factor in the more effi-
cient computation is a faster MVO computation, we also
study the required number of iterations as a potential sec-
ondary factor of efficiency. Therefore, in the bottom row of
Fig. 3 we compare the average number of MVOs for SU-
SAN against those for the vanilla random walk kernel, us-
ing the same iterative method as above. We observe that
the conjugate gradient solver (geometric variant) converges
faster for the lower bandwidth vertex kernels, primarily due
to the lower dimension of the problem in the case of SUSAN.
Since, however, the difference in required MVOs is smoother
than the running time, there seems to be an additional factor
in play. We conjecture this to be the low-pass property of
the vertex kernel of SUSAN, which seems to impose more
smoothness in the Krylov Space that this solver uses.

4.2 Accuracy Next we investigate the predictive perfor-
mance of bounded bandwidth structural vertex similarities

4Vertices with similar labels have a much higher than expected proba-
bility of being connected by an edge in these datasets, which in turn implies
a high correlation between the EEG time series of the two regions. We ob-
serve (cf. Sect. 4.2) that a nontrivial bandwidth on the labels increases the
kernel performance.

Copyright © 2021
Copyright for this paper is retained by authors

https://eda.mmci.uni-saarland.de/susan

0.01

0.1

1

geometric

R
el

.
Ti

m
e

0.1

1

exponential

Peking

OHSU

KKI

0 5 10 15 20

16

18

20

geometric

bandwidth δ

M
V

O
s

SUSAN
Unbounded

0 5 10 15 20

150

200

250

300

exponential

bandwidth δ

Figure 3: [Top] Relative time performance of SUSAN vs.
random walk with unbounded vertex kernel (100%).
[Bottom] Absolute number of matrix-vector operations
(MVOs) required for the iterative computation of SUSAN.

0.65

0.7

0.75

0.8 BZR

0.65

0.7

0.75 IMDB-BINARY

0.65

0.7

0.75 COX2

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

0.2

0.25

MSRC_9

SU
SA
N-
C-
G

CF
r-
G

RW
-G

WW
L-
No
La
b

0.55

0.6

0.65

0.7
PTC_FR

SU
SA
N-
C-
G

CF
r-
G

RW
-G

WW
L-
No
La
b

0.7

0.8

0.9
SYNTHETICnew

Kernel

Figure 4: Classification accuracy and standard deviations of
SVM classifiers on benchmark datasets for the geometric
variants. Provided for the sake of completion, as these
datasets do not yield rich enough structural vertex properties.

combined with random walk kernels. We show that us-
ing a bounded bandwidth kernel does not deteriorate per-
formance compared to the vanilla random walk kernel and
other related state-of-the-art graph kernels. We instanti-
ate the (exponential resp. geometric) random walk kernel
with integer kernel on vertex labels as described in Sect. 3.2
using coreness (SUSAN-C-E, resp. SUSAN-C-G), vertex

degree (SUSAN-Deg-E, SUSAN-Deg-G), and Weisfeiler-
Lehman labels (SUSAN-WL-E, SUSAN-WL-G). We com-
pare against vanilla random walk kernels (RW-E, RW-G),
the Core Framework kernel (CFr-E, CFr-G) [14], as an
alternative to combine random walks with degeneracy, and
against the Wasserstein-Weisfeiler-Lehman kernel [18] as a
representative state-of-the-art alternative, without using ver-
tex labels (WWL-NoLab).

We evaluate each candidate kernel by the accuracy of
a C-SVM classifier [4] equipped with it. We compute ran-
dom 80%/20% train/test splits, using stratified random sam-
pling. On each training set we use a 3-fold cross validation
to identify optimal hyper-parameters of each kernel using a
grid search with 15 samples. For every random walk kernel
we search the λ parameter in the range λ ∈ [10−6, 5] for the
exponential and in λ ∈ [10−5, 1] for the geometric variants.
For the WWL kernels we use the values λ ∈ [10−5, 10],
as suggested by the authors. The SVM regularisation pa-
rameter is selected from C ∈ [10−3, 105]. Both λ and
C are sampled using a logarithmic scale. For the trun-
cated versions of our kernels we use grid search over the set
δ ∈ {0, 1, 2, 3, 4, 5, 10, 15}.

For the sake of completeness, we first report results on
standard graph kernel benchmark datasets in Fig. 4. Our ker-
nel is never significantly worse than the Core Framework or
the vanilla random walk kernel on these datasets. However, it
is significantly better than the latter on the IMDB-Binary
dataset (p = 0.012). This indicates that the computation can
be sped up without hurting predictive performance.

Fig. 5 reports results of our kernel variants and competi-
tors on brain connectome graphs. It shows that our bounded
bandwidth kernel with Weisfeiler-Lehman labels achieves
highest predictive performance on average on OHSU, our
kernel with coreness highest performance on Peking_1
and its geometric variant on KKI. To estimate the statis-
tical significance of these results, we repeated each process
from the beginning on a fresh split of each dataset, for 30 it-
erations and use Welch’s two sample t-test with significance
level p = 0.05. Table 1 shows the p-values of two tests,
comparing SUSAN-C-G and SUSAN-C-E to the competi-
tors. There is no statistically significant performance dif-
ference between the SUSAN variants and the vanilla ran-
dom walks, except for the Weisfeiler-Lehman based ker-
nels that perform (comparatively) well on OHSU, and poorly
on Peking_1. When compared to the Core framework
kernel, SUSAN seems mostly on par with it, except on
Peking_1 where CFr-E performs poorly in comparison,
and KKI, where SUSAN-C-G is significantly better than
its core-framework equivalent (p = 0.0027). Due to the
increased computational effort of the core framework (cf.
Sect. 5) using our kernel and coreness is hence beneficial.

Finally, to assess the usefulness of degeneracy as a ver-
tex label extractor in the case of no label information, we

Copyright © 2021
Copyright for this paper is retained by authors

0.5

0.6

OHSU

0.45

0.5

0.55 KKI

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

SU
SA
N-
C-
E

SU
SA
N-
C-
G

CF
r-
E

CF
r-
G

SU
SA
N-
WL
-E

SU
SA
N-
WL
-G

SU
SA
N-
De
g-
E

SU
SA
N-
De
g-
G

RW
-E

RW
-G

WW
L-
No
La
b

0.4

0.45

0.5

0.55

0.6

Peking_1

Figure 5: Classification accuracy and standard deviations of
SVM classifiers on brain connectome datasets.

also compare it against the WWL kernel without label infor-
mation (WWL-NoLab). We find that SUSAN performs well
when compared with other methods without vertex informa-
tion, and even significantly outperforms the state-of-the-art
for the KKI (p-value=0.02). To the same end, we also re-
port the results for the WWL kernel, in which we replace
the default use of degrees with coreness (WWL-Core), with
occasionally better performance.

For the sake of completeness we also compare against
the full WWL (WWL). Unsurprisingly, WWL outperforms SU-
SAN, since the latter is not given access to label information.

5 Related Work
Gärtner et al. [5] introduced Random Walk kernels, initially
with a runtime of O

(
n6
)
. Notably, their kernel already

allows to incorporate integral vertex labels in a way that
corresponds to the trivial bandwidth δ = 0 in our setting.
Vishwanathan et al. [19, 20] proposed several iterative meth-
ods which reduced the computational complexity to O

(
n3
)
.

They generalized this to a framework for random walk ker-
nels which can incorporate nonuniform starting and stopping
probabilities on vertices, different weights for different walk
lengths, node and edge similarities encoded as kernels, as
well as the possibility to incorporate edge labels. However,
their framework cannot benefit from bounded support vertex
kernels. Kang et al. [8] propose to speed up random walk
graph kernel computation using a low rank approximation of
the adjacency matrix W× of the product graph, which in turn

can be computed implicitly by low rank approximations of
A′ and A′′. They obtain a runtime ofO

(
κn2r4 + r6 +mr

)
for κ different labels, where r is the rank parameter. In con-
trast, our method is exact (up to numeric precision) and runs
in O

(
δnB2

)
for bandwidth δ ≤ κ and B ≤ n.

Structural vertex labels have been used before to define
graph kernels. For a recent broad-scoped survey, see Kriege
et al. [9]; we focus here on the combination of random
walk kernels and structural properties. Mahé et al. [11]
first propose to use Morgan indices as vertex labels in
random walk kernels. Nikolentzos et al. [14] introduce
a graph kernel framework based on core decompositions.
They suggest to compute kernels of the form k(G′, G′′) =∑∞
k=0 kbase(H(k)

′
, H(k)

′′
) explicitly, which increases the

complexity of the kernel computations by a factor κ. In this
work, however, we use the structural information given by
the core decomposition to speed up the kernel computations.
We thus don’t fall into their framework; notably, our kernel
tends to get faster when many core values are present and
allows more fine-grained control over vertex alignments.

6 Discussion
We provide a fast way to exactly compute the random
walk kernel for bounded support integer kernels on vertex
labels, allowing to align structurally similar vertices, while
improving the runtime of the method. Our experiments show
that our method is faster than a similarly optimized version
of the generic random walk kernel and that it achieves a
significant improvement on some benchmark datasets.

As an application, we have evaluated the suitability of
coreness (or degeneracy) in random walk kernels when ver-
tex label information is not available or noisy. Another suit-
able application concerns node aligned graphs, i.e., graphs
that share a common set of vertices but have different edge
sets. If a total order on vertices is known, e.g., a space fill-
ing curve for vertices residing in Euclidean space, it is easy
to include some smoothing via a bounded bandwidth inte-
ger kernel. This would allow to additionally consider align-
ments of non-identical but very similar vertices. In this case,
choosing a mapping from vertices to integers and constant
bandwidth allows to seamlessly use this alignment informa-
tion in the random walk kernel, resulting in linear runtime
(in the input graph size) for the matrix vector multiplication
in Lemma 3.2. A further structurally aware alignment op-
tion are Morgan indices [cf. 11] which measure the sizes of
(generalized) vertex neighbourhoods.

Our proposed structurally aware kernel framework al-
lows to incorporate as much alignment information as is
available and is faster, the more information there is. This
ranges from quadratic (if all alignment information is avail-
able) to cubic runtime (if no alignment is available, corre-
sponding to the general random walk kernel.

Copyright © 2021
Copyright for this paper is retained by authors

dataset SUSAN type CFr-E CFr-G SUSAN-Deg-E SUSAN-Deg-G RW-E RW-G SUSAN-WL-E SUSAN-WL-G WWL WWL-Core WWL-NoLab

KKI
SUSAN-C-E 0.3115 0.0738 0.6694 0.3788 0.4781 0.3976 0.0525 0.2757 0.7940 0.3664 0.2080
SUSAN-C-G 0.0983 0.0027 0.4594 0.1248 0.2148 0.1114 0.0064 0.0609 0.6112 0.0854 0.0199

OHSU
SUSAN-C-E 0.8820 0.5345 0.3420 0.7192 0.6919 0.7253 0.9045 0.9834 0.9930 0.8986 0.5382
SUSAN-C-G 0.9598 0.7924 0.5669 0.9101 0.8603 0.9187 0.9745 0.9992 0.9998 0.9901 0.8226

Peking_1
SUSAN-C-E 0.0111 0.0690 0.1306 0.0517 0.1131 0.2623 0.3184 0.0060 0.9457 0.0153 0.1609
SUSAN-C-G 0.0302 0.1633 0.1766 0.0973 0.2605 0.4148 0.4074 0.0243 0.9659 0.0592 0.2932

KKI
SUSAN-C-E 0.6885 0.9262 0.3306 0.6212 0.5219 0.6024 0.9475 0.7243 0.2060 0.6336 0.7920
SUSAN-C-G 0.9017 0.9973 0.5406 0.8752 0.7852 0.8886 0.9936 0.9391 0.3888 0.9146 0.9801

OHSU
SUSAN-C-E 0.1180 0.4655 0.6580 0.2808 0.3081 0.2747 0.0955 0.0166 0.0070 0.1014 0.4618
SUSAN-C-G 0.0402 0.2076 0.4331 0.0899 0.1397 0.0813 0.0255 0.0008 0.0002 0.0099 0.1774

Peking_1
SUSAN-C-E 0.9889 0.9310 0.8694 0.9483 0.8869 0.7377 0.6816 0.9940 0.0543 0.9847 0.8391
SUSAN-C-G 0.9698 0.8367 0.8234 0.9027 0.7395 0.5852 0.5926 0.9757 0.0341 0.9408 0.7068

Table 1: Listing of p-values for the Welch t-test: comparing the performance of SUSAN (using coreness) against all other
kernels on the brain connectome datasets. Null hypotheses: [top] SUSAN is not better than X, [bottom] SUSAN is not worse
that X. That is, a blue value [top] indicates that SUSAN significantly outperforms X, whereas a red value [bottom] means
SUSAN is significantly outperformed by X. We note that WWL has access to vertex labels, and thus gets an unfair advantage.

Acknowledgements PW was partially funded by the
Federal Ministry of Education and Research of Germany
under grant 01|S18038C.

References

[1] A. Adiga and A. K. S. Vullikanti. How Robust Is the
Core of a Network? In ECMLPKDD, 2013.

[2] A. H. Al-Mohy and N. J. Higham. Computing the
Action of the Matrix Exponential, with an Application to
Exponential Integrators. SIAM J. Sci. Comp., 2011.

[3] K. M. Borgwardt, C. S. Ong, S. Schönauer, S. V. N.
Vishwanathan, A. J. Smola, and H.-P. Kriegel. Protein
function prediction via graph kernels. Bioinformatics’05.

[4] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and
C.-J. Lin. LIBLINEAR: A Library for Large Linear
Classification. JMLR, 2008.

[5] T. Gärtner, P. Flach, and S. Wrobel. On Graph Kernels:
Hardness Results and Efficient Alternatives. In Learning
Theory and Kernel Machines, 2003.

[6] D. Haussler. Convolution kernels on discrete structures.
Technical Report UCSC-CRL-99-10, University of Cali-
fornia - Santa Cruz, 1999.

[7] J. Kalofolias, M. Boley, and J. Vreeken. Discovering
robustly connected subgraphs with simple descriptions.
In ICDM, 2019.

[8] U. Kang, H. Tong, and J. Sun. Fast random walk graph
kernel. In SDM, 2012.

[9] N. M. Kriege, F. D. Johansson, and C. Morris. A survey
on graph kernels. Appl. Netw. Sci., 2020.

[10] C. F. V. Loan. The ubiquitous Kronecker product. J.
Comput. Appl. Math., 2000.

[11] P. Mahé, N. Ueda, T. Akutsu, J.-L. Perret, and J.-P. Vert.
Extensions of Marginalized Graph Kernels. In ICML’04.

[12] C. Morris, N. M. Kriege, F. Bause, K. Kersting,
P. Mutzel, and M. Neumann. Tudataset: A collec-
tion of benchmark datasets for learning with graphs. In
GRL+@ICML, 2020. arXiv:2007.08663.

[13] G. Nikolentzos and M. Vazirgiannis. Random Walk
Graph Neural Networks. In NeurIPS, 2020.

[14] G. Nikolentzos, P. Meladianos, S. Limnios, and
M. Vazirgiannis. A Degeneracy Framework for Graph
Similarity. In IJCAI, 2018.

[15] S. Pan, J. Wu, X. Zhu, G. Long, and C. Zhang. Task
Sensitive Feature Exploration and Learning for Multitask
Graph Classification. IEEE Trans. Cybern., 2017.

[16] T. H. Schulz, T. Horváth, P. Welke, and S. Wrobel.
A generalized weisfeiler-lehman graph kernel. 2021.
arXiv:2101.08104.

[17] S. B. Seidman. Network structure and minimum de-
gree. Social Networks, 1983.

[18] M. Togninalli, M. E. Ghisu, F. Llinares-López,
B. Rieck, and K. M. Borgwardt. Wasserstein Weisfeiler-
Lehman graph kernels. In NeurIPS, 2019.

[19] S. V. N. Vishwanathan, K. M. Borgwardt, and N. N.
Schraudolph. Fast computation of graph kernels. In
NeurIPS, 2006.

[20] S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor,
and K. M. Borgwardt. Graph Kernels. JMLR, 2010.

[21] P. M. Weichsel. The Kronecker product of graphs.
AMS Proc., 1962.

Copyright © 2021
Copyright for this paper is retained by authors

	1 Introduction
	2 Preliminaries
	2.1 The Random Walk kernel
	2.1.1 Computation

	2.2 Graph Concepts

	3 Structure-Aware Vertex Similarities
	3.1 Selection of the Structural Attribute
	3.2 Selection of the Attribute Kernel
	3.3 Computation of

	4 Experiments
	4.1 Efficiency
	4.2 Accuracy

	5 Related Work
	6 Discussion

