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ABSTRACT

Knowledge graphs (KGs) store highly heterogeneous information
about the world in the structure of a graph, and are useful for tasks
such as question answering and reasoning. However, they often
contain errors and are missing information. Vibrant research in KG
refinement has worked to resolve these issues, tailoring techniques
to either detect specific types of errors or complete a KG.

In this work, we introduce a unified solution to KG character-
ization by formulating the problem as unsupervised KG summa-
rization with a set of inductive, soft rules, which describe what is
normal in a KG, and thus can be used to identify what is abnor-
mal, whether it be strange or missing. Unlike first-order logic rules,
our rules are labeled, rooted graphs, i.e., patterns that describe
the expected neighborhood around a (seen or unseen) node, based
on its type, and information in the KG. Stepping away from the
traditional support/confidence-based rule mining techniques, we
propose KGist, Knowledge Graph Inductive SummarizaTion, which
learns a summary of inductive rules that best compress the KG
according to the Minimum Description Length principle—a formu-
lation that we are the first to use in the context of KG rule mining.
We apply our rules to three large KGs (NELL, DBpedia, and Yago),
and tasks such as compression, various types of error detection,
and identification of incomplete information. We show that KGist
outperforms task-specific, supervised and unsupervised baselines
in error detection and incompleteness identification, (identifying
the location of up to 93% of missing entities—over 10% more than
baselines), while also being efficient for large knowledge graphs.
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1 INTRODUCTION

Knowledge graphs (KGs), such as NELL [9], DBpedia [5], and Yago
[46], store collections of entities and relations among those entities
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Figure 1: KGist summarizes a KG (left) by finding patterns that can

be interpreted as rules (right). For instance, the rule that books are

written by authors, who are born in countries, which holds in two

out of three cases in this KG (Frankenstein is missing an author),

correctly describes books in general. However, the opposite pattern

does not: while Leo Tolstoy writes books, Emily Dickinson writes po-

ems. The summary of rules characterizes what is normal in a KG,

while simultaneously revealing what is strange and missing, such
as the erroneous and missing edges around Frankenstein.

(Fig. 1), and are often used for tasks such as question answering,
powering virtual assistants, reasoning, and fact checking [6, 21, 31,
44]. Many KGs encode encyclopedic information, i.e., facts about
the world, and are, to a large degree, automatically built [31]. As a
result, they contain many types of errors, and are missing edges,
nodes, and labels. This has led to a significant amount of research
on KG refinement, resulting in task-specific methods that either
identify erroneous facts or add new ones [35]. While the accuracy
of KG tasks may be improved by refinement, KGs grow to the order
of millions or billions of edges, making KGs more inaccessible to
users [21], and tasks over them more computationally difficult [31].

As refinement helps address accuracy issues, graph summariza-
tion [26] can help address KG size issues by describing a graph with
simple and concise patterns. However, KG-specific summarization
[53] focuses mostly on query- or search-related summaries [41, 45,
50], while most general-graph summarization work is designed
for purposes other than KG refinement, and aims to compress a
graph by grouping together similarly linked and similarly labeled
nodes. These summaries would only cluster existing information
in a KG, but encyclopedic KGs will always be missing facts (since
the world’s information is unbounded).

Thus, we introduce the problem of inductive KG summarization,
in which, given a knowledge graphG , we seek to find a concise and
interpretable summary ofG with inductive rules that can generalize
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to the parts of the world not captured byG. With this characteriza-
tion of the norm, we can also identifywhat is strangein andwhat
is missingfrom G: the parts of the graph that violate the rules or
remain unexplained by the summary. These strange parts of the
graph may be genuine exceptions, errors, or missing information.
To solve the problem, we proposeKGist , an information-theoretic
approach that serves as auni�ed solution to summarization and
various KG re�nement tasks, which have traditionally been viewed
independently.

Our main contributions are summarized as follows:

� Problem Formulation . Rather than targeting a speci�c re-
�nement task (e.g., link prediction), we unify various re�nement
tasks by joining the problems of re�nement and unsupervised sum-
marization, and introduce the notion of inductive summarization
with soft rules that plausibly generalize beyond the KG. Ÿ 3

� Expressive rules. While current methods (Ÿ 2) learn �rst-
order logic rules that have single-element consequences, which
predict single edges, our rules are labeled, rooted graphs that are
recursively de�ned, allowing them to describearbitrarygraph struc-
ture around a node (i.e., they can have complex consequences). Our
formulation of rules takes a step towards treating knowledgegraphs
as graphs�something often overlooked in KG re�nement [35]. Ÿ 3

� MDL-based approach. We introduceKGist , an unsuper-
vised, information-theoretic approach that identi�es rules via the
Minimum Description Length (MDL) principle [38], going beyond
the support/con�dence framework of prior work. Ÿ 4

� Experiments on real KGs. We perform extensive experi-
ments on large KGs (NELL, DBpedia, Yago), and diverse tasks, in-
cluding compression, various types of error detection, and identi-
fying the absence of nodes. We show thatKGist learns orders of
magnitude fewer rules than current methods, allowingKGist to be
e�cient and e�ective at diverse tasks.KGist identi�es the location
of 76-93% of missing entities�over 10% more than baselines. Ÿ 5

Our code and data are available at https://github.com/GemsLab/KGist.

2 RELATED WORK
2.1 Knowledge Graph Re�nement
KG re�nement attempts to resolve erroneous or missing informa-
tion [35, 36]. Next, we discuss the three most relevant categories
of re�nement techniques (although other methods exist, such as
crowd-sourcing-based methods [23]).

2.1.1 Rule-mining-based Refinement.These approaches are rem-
iniscent of association rule mining [2]. AMIE [18] introduces an
alteredcon�dencemetric based on the partial completeness assump-
tion, according to which, if a particular relationship of an entity
is known, then all relationships of that type for that entity are
known (as opposed to theopen-world assumption, which assumes
that an absent relationship could either be missing or not hold
in reality). AMIE+ [17] is optimized to scale to larger KGs, and
Tanonet al.[47] seek to acquire and use counts of edges to measure
the incompleteness of KGs. Other, non-rule-mining-based meth-
ods have also been proposed for measuring KG quality [22, 37].
A supervised approach that augments AMIE+ [16] takes example
complete and incomplete assertions (e.g., crowd-sourced) as train-
ing data, and predicts completeness of predicate types observed

during training. These works focus on re�nement and �nd Horn
rules onbinary predicates. In contrast, we focus on summarization,
and our rules can be applied to anode, knowing only its type. Also,
we go beyond the support/con�dence framework, which treats KGs
as a table of transactions, and take a graph-theoretic view instead.
One work thatdoestake a graph-theoretic view learns rules in a
bottom-up fashion by sampling paths from the KG, but the rules
are constrained to be path-based Horn-rules [28]. Graph-Repairing
Rules (GRRs) [10] have also been proposed to target the speci�c
problems of identifying incomplete, con�icting, and redundant in-
formation in graphs. They focus on simple graphs, whereas KGs
contain multi-edges [31], multiple labels per node (Tab 2), and self-
loops. GRRs were preceded by less expressive association rules with
graph patterns [14] and functional dependencies for graphs [15].
Rule-mining also has applications beyond KG re�nement, such as
recommender systems [27]. Our rules could potentially be used in
these scenarios, but we leave that for future work.

2.1.2 Embedding-based Refinement.KG embedding approaches
seek to learn representations of nodes and relations in a latent space
[49], spanning from tensor factorization-based methods [32, 33]
to translation-based methods such as TransE [8] and semantic
matching models such as ComplEx [48]. These works often perform
link prediction, which is useful for completing relationships among
entities, but only predicts links between entities already in the KG.
In contrast,KGist can identify theabsenceof entities from the KG.

2.1.3 Hybrid Refinement.Recent re�nement methods improve link
prediction performance by iteratively applying rule mining and
learning embeddings. For instance, pre-trained embeddings have
been used to more accurately measure the quality of candidate
rules [20]. In [52], facts inferred from rules improve embeddings
of sparse entities, and in turn embeddings improve the e�ciency
of rule mining. Unlike these works, we focus on unifying di�erent
re�nement tasks, going beyond link prediction.

2.2 Graph Summarization
Graph summarization seeks to succinctly describe a large graph in a
smaller representation either in the original or a latent space [24,26].
Much of the work onknowledge graphsummarization has focused
on query-related summaries, such as query answer-graph sum-
maries [50], patterns that can be used as query views to improve KG
search [13, 45], and sparse, personalized KG summaries�based on
historical user queries�for use on personal, resource-constrained
devices [41]. While our summaries could conceptually be used for
query-related problems, we focus on the problem of characterizing
what is normal, strange, and missing in a KG. We also construct
summaries with patterns that generalize, which is not considered
by [45]. Similar to summarization, Bodedet al. [7] use MDL to
assess KG evolution, but they do not target re�nement. Beyond
KGs, MDL has been used to summarize static and temporal graphs
via structures, such as cliques, stars, and chains [19, 25, 30, 42],
or frequent subgraphs [34] (also studied from the perspective of
subgraph support [12]). Unlike these works, we learninductive
summaries of recursively de�nedrulesor rooted graphs, which
incorporate both the KG structure and semantics, and can be used
for graph re�nement.

https://github.com/GemsLab/KGist
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Table 1: Description of major symbols.

Notation Description

G¹V ; Eº knowledge graph
A, L binary adjacency tensor and label matrix ofG, resp.
M; M0 model or set of rules, and the empty model, resp.
L¹:º # of bits to transmit an object (e.g., a graph or rule)
g rule in the form of a graph pattern

A ¹g º, A ¹g º
c , A ¹g º

� assertions, correct assertions, exceptions ofg, resp.

j: j set cardinality and number of 1s in tensor/matrix

3 INDUCTIVE SUMMARIZATION: MODEL
In this section we describe our proposed MDL formulation for
inductive summarization of knowledge graphs, after introducing
some preliminary de�nitions. We list the most frequently used
symbols in Table 1, along with their de�nitions.

3.1 Preliminaries
3.1.1 Knowledge Graph (KG) G. A KG is a labeled, directed
graphG = ¹V ; E; L V ; L E; � º, consisting of a set of nodes or enti-
ties V , a set of relationship typesL E, a set of edges or triples
E 2 V � L E � V , a set of node labelsL V , and a function
� : V ! P¹L V º mapping nodes to their labels, the set of which
we call the node'stype. We give an example KG in Fig. 1. An edge or
triple t = ¹s;p;oº connects thesubjectandobjectnodess;o 2 V via
a relationship type (predicate) p 2 L E. An example is(War & Peace,
writtenBy, Leo Tolstoy ). Triples encode a unit of information or
fact, semantically about the subject. Since a pair of nodes may have
multiple edges between them, we represent the connectivity ofG
with a jVj � jV j � jL E j adjacency tensorA. Similarly, we store
the label information in anjL V j � jV j binary label matrix,L.

3.1.2 Ideal Knowledge Graph Ĝ. An ideal knowledge graph
Ĝ¹V̂ ; Ê; L̂ V ; L̂ E; ^� º contains all the correct facts in the world and
no incorrect ones, i.e.,¹s;p;oº 2 Ê if and only if the fact holds in
reality. An ideal KG is only a conceptual aid, and does not exist,
since KGs have errors and missing information.

3.1.3 Model M of a KG. A modelM of a KG is aset of inductive
rules, which describe its facts (see formal de�nition in Ÿ 3.1.4). In
Ÿ 3.2, we will explain a model in the context of our work.

3.1.4 Rule g. A rule g 2 M is de�ned recursivelyandcomposition-
aly. Speci�cally, ruleg = ¹L g; � gº is a rooted, directed graph, with
a subset of node labelsL g � L V de�ning g's root , and a set of
children � g. Each child in� g is of the form¹p; � ; ĝº consisting of
a predicatep (e.g.,writtenBy ), the directionality� of the rule (i.e.,
! or  ), and a descendent rulêg. A leaf rule has no children,
i.e.,gleaf = ¹L g; ;º . An atomic rule consists of one root with a sin-
gle child (e.g.,({Book}, {writtenBy ,  , ({Author} , ; )})), since all rules
can be formed from compositions of these. Ruleg in Fig. 2 (which
reads,Books have fictional family characters and are written
by authors who are born in countries. ), rooted atBook, consists of
three atomic rules, has rootL g = f Bookgand two children� g (for
clarity we omit the braces for sets):(writtenBy , ! , (Author, (bornIn ,
! , ( Country, ; ))))and(character ,  , (Fictional Family , ; )).

Figure 2: An example rule and one of its correct assertions. The
correct assertion is a traversal starting at War & Peacebecause it
is a Book (root), and following the rule's syntax to induce a sub-
graph (line styles denote edge types). For instance, the �rst child
of the rule lexicographically is (character,  , ({Fictional Family},
; )) , which would be traversed recursively if it were not a leaf rule.
This part of the rule asserts that books have one or more Fictional
Family characters . During the traversal, everyneighboring node that
matches the rule's syntax is traversed (e.g. all the �ctional families
are visited). Traversals from all Booknodes constitute A ¹g º. If a node
lacks a neighbor asserted by the rule (e.g. if Leo Tolstoy had no bornIn
edge), then it is an exception.

3.1.5 Rule Assertion ag . An assertionag of a ruleg = ¹L g; � gº
over the KGG is an instantiation of the edges and labels thatg as-
serts around a particular node, and is reminiscent of a rulegrounding
[28]. The set of all assertions of ruleg is A ¹gº. Formally,ag 2 A ¹gº

is a subgraph induced by a traversal that starts at a nodesag 2 V
with at least the same labels asL g (i.e.,L g � � ¹sag º), and that
recursively followsg's syntax. For example,War & Peaceis the start-
ing nodesag of one assertion of the rule in Fig. 2. If the traversal
fails to match the syntax of the rule at any point, then we call it
an exception of g, in which case the assertion is just the node
sag � ag that violates the rule. Otherwise the induced subgraph

is called acorrect assertion of g. Formally,A ¹gº
c and A ¹gº

� are
the set ofg's correct assertions and exceptions respectively. Every

assertion is either a correct assertion or an exception, soA ¹gº
c and

A ¹gº
� form a partition ofA ¹gº.

3.1.6 Minimum Description Length (MDL) Principle. In two-
part (crude) MDL [39], given a set of modelsM , the best model
M 2 M minimizesL¹Mº+L¹Dj Mº, whereL¹Mº is the length (in bits)
of the description ofM, andL¹Dj Mº is the length of the description
of the data when encoded usingM. In our work, we leverage MDL
to concisely summarize a given KG.

3.1.7 Problem De�nition. Because both errors and missing in-
formation are instances ofabnormalities, we unify KG characteriza-
tion in terms of what is normal, strange, and missing, as follows:

Problem 1 (Inductive KG Summarization). Given a knowledge
graphG, and an inaccessible ideal knowledge graphĜ, we seek to �nd
a concise modelM� of inductive rules that summarize what is normal
in bothG andĜ. The rules should be (1) interpretable (by which we
mean readable in natural language) and, (2) their exceptions should
reveal abnormal information in the KG, whether it be erroneous (e.g.,
somet 2 E : t < Ê), missing (e.g., somet 2 Ê : t < E), or a legitimate
exception (e.g., somet 2 E : t 2 Ê).

Theconciseset of rules admits e�cient performance on follow-
up tasks (such as error detection and incompleteness identi�cation).
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