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Abstract—Recent advances in computing resources have made
it possible to collect enormous amounts of interconnected data,
such as social media interactions, web activity, knowledge bases,
product and service purchases, autonomous vehicle routing,
smart home sensor data, and more. The massive scale and
complexity of this data, however, not only vastly surpasses human
processing power, but also goes beyond limitations with regard
to computation and storage. That is, there is an urgent need for
methods and tools that summarize large interconnected data to
enable faster computations, storage reduction, interactive large-
scale visualization and understanding, and pattern discovery.

Network summarization—which aims to find a small repre-
sentation of an original, larger graph—features a variety of
methods with different goals and for different input data rep-
resentations (e.g., attributed graphs, time-evolving or streaming
graphs, heterogeneous graphs). The objective of this tutorial is
to give a systematic overview of methods for summarizing and
explaining graphs at different scales: the node-group level, the
network level, and the multi-network level. We emphasize the
current challenges, present real-world applications, and highlight
the open research problems in this vibrant research area.

I. TUTORIAL OVERVIEW

Our tutorial is structured into three parts. In the first part

we focus on an important, though under-studied topic, namely

that of summarizing and explaining a subset of nodes in a

larger graph. These nodes can either be given to us beforehand

(e.g. hand-picked) or discovered by an independent algorithm,

and we are asked to summarize them using the graph [3],

[2]. Alternatively, the task of discovering those sets of nodes

can be integrated (i.e., subgroup or bump discovery [6]); the

goal becomes to discover descriptions (e.g. graph queries) that

identify subsets of nodes that we can summarize well given

the graph structure [4]. Both approaches, and especially their

combination, are of particular interest in interactive systems

where users want the system to explain the specific part of

the graph that is of interest [11].

The second part focuses on methods for summarizing a

single graph (e.g., a snapshot or aggregate network) [9], as a

whole. We discuss both methods that use solely the structure

of a graph, and methods that also leverage side information,

such as node and edge attributes [13], [8], [10]. In both cases,

we provide a taxonomy of the approaches based on their key

methodological ideas (e.g., group-based vs. influence-based

vs. pattern-based), output type (e.g., supergraph vs. sparsified

graph vs. compressed graph), and main objective (e.g., storage,

efficiency, visualization).

In the third part we turn to multi-network summarization.

In addition to covering scalable techniques tailored to large

time-evolving or streaming networks [9], [1], [5], [12], [14],

we present recent advances in summarizing multiple disparate
networks simultaneously in order to construct domain-specific

summaries [7] or model the networks’ co-evolution [15].

The slides and more information for this tutorial are avail-

able at http://web.eecs.umich.edu/∼dkoutra/tut/icdm18.html.
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