
SQUISH: Efficiently Summarising Event Sequences
with Rich Interleaving Patterns

Apratim Bhattacharyya◦ Jilles Vreeken◦

Abstract
Discovering the key structure of a database is one of the main goals
of data mining. In pattern set mining we do so by discovering
a small set of patterns that together describe the data well. The
richer the class of patterns we consider, and the more powerful our
description language, the better we will be able to summarise the
data. In this paper we propose SQUISH, a novel greedy MDL-
based method for summarising sequential data using rich patterns
that are allowed to interleave. Experiments show SQUISH is orders
of magnitude faster than the state of the art, results in better models,
as well as discovers meaningful semantics in the form patterns that
identify multiple choices of values.

1 Introduction
Discovering the key patterns from a database is one of the
main goals of data mining. Modern approaches do not
to ask for all patterns that satisfy a local interestingness
constraint, such as frequency [2, 10], but instead ask for that
set of patterns that is optimal for the data at hand. There
are different ways to define this optimum. The Minimum
Description Length (MDL) principle [5, 14] has proven to
be particularly successful [16, 22]. Loosely speaking, by
MDL we say that the best set of patterns is the set that
compresses the data best. How well we can compress, or
better, describe the data depends on the description language
we use. The richer this language, the more relevant structure
we can identify. At the same time, a richer language means a
larger search space, and hence requires more efficient search.

In this paper we consider databases of event sequences,
and are after that set of sequential patterns that together de-
scribe the data best—as we did previously with SQS [20].
Like SQS we describe a database with occurrences of pat-
terns. Whereas SQS requires these occurrences to be disjoint,
however, we allow patterns to interleave. This leads to more
succinct descriptions as well as better pattern recall. More-
over, we use a richer class of patterns. That is, we do not only
allow for gaps in occurrences, but also allow patterns to emit
one out of multiple events at a certain location. For example,
the pattern ‘paper [proposes | presents] new’ discovered in
the JMLR abstract database matches two common forms of

◦Max-Planck Institute for Informatics and Saarland University,
Saarbrücken, Germany. {abhattac,jilles}@mpi-inf.mpg.de

expressing that a paper presents or proposes something new.
With this richer language, we can obtain much better

compression rates with much fewer patterns. To discover
good models we propose SQUISH, a highly efficient and
versatile search algorithm. Its efficiency stems from re-
use of information, partitioning the data, and in particular
from considering only the currently relevant occurrences of
patterns in the data. It is a natural any-time algorithm, and
can be ran for any time budget that is opportune.

Extensive experimental evaluation shows that SQUISH
performs very well in practice. It is much better at retrieving
interleaving patterns than the very recent proposal by Fowkes
and Sutton [4], and obtains much better compression rates
than SQS [20], while being orders of magnitude faster than
both. The choice-patterns it discovers give insight in the data
beyond the state of the art, identifying semantically coherent
patterns. Moreover, SQUISH is highly extendable, allowing
for richer pattern classes to be considered in the future.

2 Preliminaries
Here we introduce basic notation, and give short introduc-
tions to the MDL principle.

2.1 Notation We consider databases of event sequences.
Such a database D is composed of |D| sequences. A
sequence S ∈ D consists of |S| events drawn from an
alphabet Ω. The total number of events occurring in the
database, denoted by ||D||, is simply the sum of lengths of
all sequences

∑
S∈D |S|. We write S [j] to refer to the jth

event in sequence S. The support of an event e ∈ Ω in a
sequence S is simply the number of occurrences of e in S,
i.e. supp(e | S) = |{j | S[j] = e}|. The support of e in a
database D is defined as supp(e|D) =

∑|D|
i=1 supp(e | Si).

We consider two types of sequential patterns. A serial
episode X ∈ Ω|X| is a sequence of |X| events, and we
say that a sequence S contains X if there is a subsequence
in S equal to X . We allow noise, or gap events, within
an occurrence of X . We also consider choice episodes,
or choicisodes. These are serial episodes with positions
matching one out of multiple events. For example, serial
episode ac matches an a followed by c, whereas choicisode
[a, b] c matches occurrences of a or b followed by c.

2.2 Brief introduction to MDL The Minimum Descrip-
tion Length principle (MDL) [5, 14] is a practical version
of Kolmogorov Complexity [9]. Both embrace the slogan
Induction by Compression. We use the MDL principle for
model selection.

By MDL, the best model is the model that gives the
best lossless compression. More specifically, given a set of
modelsM, the best modelM ∈M is the one that minimizes
L(M) + L(D | M), in which L(M) is the length in bits
of the description of M , and L(D | M) is the length of
the data when encoded with model M . Simply put, we are
interested in that model that best compresses the data without
loss. MDL as describe above is known as two-part MDL, or
crude MDL; as opposed to refined MDL. In refined MDL
model and data are encoded together [5]. We use two-part
MDL because we are specifically interested in the model:
the patterns that give the best description. In MDL we are
only concerned with code lengths, not actual code words.

Next, we formalise our problem in terms of MDL.

3 MDL for Event Sequences
To use MDL we need to define a model classM, and how to
encode a model M ∈M and data D in bits.

As models we will consider code tables [20,22]. A code
table CT is a dictionary between patterns and associated
codes. A code table consists of the singleton patterns e ∈ Ω,
as well as a set P of non-singleton patterns. We write
codep(X) to denote the pattern code that identifies a pattern
X ∈ CT . Similarly, we write codef (X) and codeg(X) for
the codes resp. identifying a fill resp. a gap in the occurrence
of a pattern X .

We can encode a sequence databaseD using the patterns
in a code table CT , which generates a cover C of the
database. A cover C uniquely defines a pattern code stream
Cp and a meta code streamCm. The pattern stream is simply
the concatenation of the codes corresponding to the patterns
in the cover, in the order of their appearance. Likewise,
the meta stream Cm is the concatenation of the gap and fill
codes corresponding to the cover. In Fig. 1, we illustrate two
example covers and corresponding code tables, the first using
only singletons and the second cover with interleaving using
patterns from a richer code table with choicisodes.

Before formalising our score, it is helpful to know how
to decode a database given a code table and the code streams.

3.1 Decoding a database To decode a database, we start
by reading a codep(X) from the pattern stream Cp. If the
corresponding pattern X is a singleton, we append it to our
reconstruction of the database D. If it is a non-singleton, we
append its first event, X[1], D. To allow for interleaving, we
have to add a new context to context list Λ. A context is a
tuple (X, i) consisting of a pattern X , and a pointer i to the
next event to be read from the pattern. For an example, let

Data D: a b d c d c a

Cover 1: using only singletons
Cp a b d c d c a

Cover 2: using interleaving patterns
Cp p q a

Cm ? ? ! ! ? ! ? !

alignment
a b d c d c a
p

q
a

CT 1: a a

b b

c c

d d

CT 2: a a

b b

c c

d d

acd p ! ?

b [d , c] c q ! ?

r ! ?

fills ga
ps

Figure 1: Example of two possible covers. The first uses only
singletons, the second includes interleaving and choicisodes.

us consider Cover 2 in Fig. 1. We read codep(p) from codep,
append p[1] = a to D, and add (p, 2) to the context list.

Next, if the context list is non-empty, we read as many
meta codes from Cm as there are contexts in Λ. If we read
a fill code codef (X) corresponding to one of the contexts
(X, i) ∈ Λ, we append the next event from X , X[i] to the
data D, and increment the pointer. If after this step we have
finished reading the pattern, we remove its context from the
list. If we only read gap codes codeg(X) for every pattern
X in the context list, we read again from the pattern stream.
We do this until we reach the end of the pattern stream Cp.

Continuing our example, we read codeg(p) from Cm,
which corresponds to a gap in the occurrence of pattern p.
We read codep(q) from Cp, write q[1] = b to D, and insert
context (q, 2) to Λ. Next, Λ contains two contexts, and we
read two meta codes from Cm, viz. codeg(p) and codef (q).
As for context (q, 2) we read a fill code, we write q[2] = d
to D, and increment its pointer to 3. Etc.

3.2 Calculating Encoded Lengths Given the above
scheme we know which codes to expect when, and can now
formalise our score. We build upon and extend the encoding
on Tatti & Vreeken [20] for richer covers and patterns.

Encoded Length of the Database We encode the pattern
stream Cp using Shannon optimal prefix codes. The length
of the pattern code L(codep(X)) for a pattern X depends
on how often it is used in the pattern stream. We write
usage(X) to denote the number of times codep(X) occurs
in Cp. The length of the optimal pattern code for X then is

L(codep(X)) = − log
(usage(X)∑

Y ∈CT usage(Y)

)
.

The encoded length of the whole pattern stream Cp is then
simply L(Cp) =

∑
X∈CT usage(X)L(codep(X)).

To avoid arbitrary choices in the model encoding, we

use prequential codes [5] to encode the meta stream. Pre-
quential codes are asymptotically optimal without knowing
the distribution beforehand. The idea is that we start with an
uniform distribution over the events in the stream and update
the counts after every received event. This means we have a
valid probability distribution at every point in time, and can
hence send optimal prefix codes. The total encoded length
of the meta stream pattern is

L(Cm) =
∑

X∈CT

(
−

fills(X)∑
i=1

log

(
ε+ i

2ε+ i

)

−
gaps(X)∑

i=1

log

(
ε+ i

2ε+ fills(X) + i

))
.

where ε = 0.5 is a constant by which we initialize the
distribution [5], fills(X) and gaps(X) are the number of
times codef (X) resp. codeg(X) occurs in Cm.

For lossless decoding of database D, the number of
sequences |D| and the length of each sequence S ∈ D should
also be encoded. We do this using LN, the MDL optimal
code for integers n ≥ 1 [15].

Combining the above, for the total encoded length of a
database, given a code table CT and cover C, we have

L(D | CT) = LN(|D|) +
∑
S∈D

LN(|S|) +L(Cp) +L(Cm) .

Next we discuss how to encode a model.

Encoded Length of the Code Table Note that the simplest
valid code table consists of only the singletons Ω. We refer
to this code table as ST , or, the standard code table. We
use ST to encode the non-singleton patterns P of a code
table CT . The usage of a singleton e ∈ ST is simply
its support in D, and hence the code length codep(e) =

− log
(

supp(e|D)
||D||

)
. To use these codes the recipient needs to

know the supports of the singletons. We encode these using
a data to model code—an index over a canonically ordered
enumeration of all possibilities [21]; here it is the number
of possible supports of |Ω| alphabets over a database length
of ||D||,

(||D||
|Ω|
)
. The length of the code is now simply the

logarithm over the number of possibilities.
Given the standard code table ST , we can now encode

the patterns in the code table. We first encode the length
|X| of the pattern, and then number of choice spots in the
pattern, ||X|| − |X|. We encode how many choices we have
per location using a data to model code. We finally encode
the events X[i] using the standard code table, ST . That is,

L(X | ST) = LN(|X|) + LN(||X|| − |X|+ 1)

+ log

(
||X|| − 1

|X| − 1

)
+

||X||∑
i=1

L(X[i] | ST) .

Note that if we do not consider choicisodes, we can simplify
the above as we only need to transmit the first and last part
of this code. That is, the length and the events in the pattern.

Recall that, pattern codes in the pattern stream Cp are
optimal prefix codes. The occurrences of the non-singleton
patterns need to be transmitted with the model. We do this
again using a data to model code. We encode the sum of
pattern usages, usage(P) =

∑
X∈CT\Ω usage(X), by the

MDL optimal code for integers. It is equivalent to use a
pattern code per choicisode and then identify the choice-
events, or to use a separate pattern code for each instantiation
of the choicisode. For simplicity we make the latter choice.

The total encoded size of code table CT given a cover
C of database D is then given by

L(CT | D,C) =LN(|Ω|) + log

(
||D||
|Ω|

)
+ LN(|P|+ 1) + LN(usage(P) + 1)

+ L(usage(P), |P|) +
∑

X∈CT

L(X,CT) .

We are interested in the set of patterns and a correspond-
ing cover C which minimizes the total encoded length of the
code table and the database, which is,

L(CT , D) = L(CT | C) + L(D | CT) .

We can now formally define our problem as follows.

Minimal Code Table Problem Let Ω be a set of events and
let D be a sequence database over Ω, find the minimal set
of serial (choice) episodes P such that for the optimal cover
C of D using P and Ω, the total encoded cost L(CT , D) is
minimal, where CT is the code-optimal code table for C.

For a given database D, we would like to find its
optimal pattern set in polynomial time. However, there
are exponentially many possible pattern sets, and given a
pattern set, there are exponentially many possible covers.
For neither problem there exists trivial structure such as
monotonicity or sub-modularity that would allow for an
optimal polynomial time solution.

Hence, we resort to heuristics. In particular, we split
our problem into two parts. We first explain our greedy
algorithm to find a good cover given a set of patterns. We
describe how to find a set of good patterns in Sec. 5.

4 Covering a Database
Given a pattern set P and database D, we are after a cover C
with interleaving and nesting, that minimises L(CT , D).

Each occurrence of a pattern X in database D, possibly
with gaps, defines a window. We denote by S [a, b] a window
in sequence S that extends from the position a to b. Two
windows are non-overlapping if they do not have any events
in common which belong to their respective patterns. Two

interleaving or nesting windows might have common events,
which, as we do not allow overlap, leads to gap events for one
of the two windows. Two windows are disjoint if they do not
have any events in common. For every event in the database
D, there can be many windows with which we can choose
to cover it. The optimal cover depends upon the pattern, fill,
gap codes of the patterns. The choices grow exponentially
with sequence length, with no trivial sub-structure.

To find good disjoint covers, Tatti & Vreeken [20] use
an EM-style approach. At each step until convergence,
given the pattern, gap and fill codes, the authors use the
dynamic programming based algorithm ALIGN to find a
cover. ALIGN takes a set of possibly overlapping minimal
windows and returns a subset of disjoint minimal windows
(i.e. a cover) which maximizes the sum of gain (a heuristic
measure) of each window. Then, the lengths of the codes are
reset based upon the found cover. It is unclear if this scheme
can be extended to return a cover with interleaved or nested
windows efficiently. Moreover if we extend our model with
a new pattern, we have to rerun ALIGN from scratch.

We propose an efficient and easily extendible heuristic
for good covers with interleaved and nested windows.

4.1 Window Lengths For a given pattern, as we consider
windows with gaps, the length of an window in the database
can be arbitrarily long. Tatti & Vreeken therefore consider
only minimal windows. A window w = S [i, j] is a minimal
window of a pattern X if w contains X but no other proper
sub-windows of w contain X . If no interleaving or nesting
is allowed, it is optimal to consider only minimal windows.
Otherwise, it is easy to construct examples where the optimal
cover consists of non-minimal windows.

Consider the sequence abdccdc and a code table with
the pattern abc, dc and the singletons a, b, c and d. Two
possible covers are: (ab d c) c dc using only minimal
windows and (ab(dc)c) dc where a non-minimal window of
abc is used and is nested with a window of dc. It is easy
to see that the second cover leads to lower encoded length
L(abdccdc, {abc, dc, a, b, c, d}) (see Fig 2) of about 2.9 bits.

Ideally, we should consider all possible windows. The
number of possible windows of a pattern, however, is
quadratic in the length of the database. This means that
even a search for all windows is computationally inefficient.
Therefore, we first search for only the shortest window from
each starting position in the database. We consider longer
windows when necessary. We do so as follows.

4.2 Window Search Given a pattern X , we use the
pseudo-code FINDWIN presented as Algorithm 1 to search
for its windows in the a sequence or sub-sequence S of
database D. It returns us Wcand(X) which is a set of can-
didate windows of the pattern X . It considers only the first
window from each starting position in the sequence S. We

Data D: a b d c c d c

Cover 1: using minimal windows
Cp p d c q

Cm ! ? ! !

alignment
a b d c c d c
p

d

c q

Cover 2: using non-minimal windows
Cp p q q

Cm ! ? ? ! ! !

alignment
a b d c c d c
p

q
q

CT : a a

b b

c c

d d

abc p ! ?

dc q ! ?

fills ga
ps

Figure 2: Two possible covers using the same code table.
The first cover uses only minimal windows. The second
includes nesting and a non-minimal window of abc. The
second cover leads to an overall lower encoded length.

later choose a subset of these windows (along with those
of patterns other than X in CT) to create a cover of the
database L(D | CT). To control the ratio of gaps and fills,
we maintain a budget variable. This is the number of extra
allowed overall gaps. Ideally we would like to have more
fills than gaps as it leads to better compression.

To search for windows efficiently in FINDWIN, we use
an inverted index: index−1(x) which gives us a list of
positions of the event x ∈ Ω in the database. We use a
priority queueQ to store potential windows sorted by length.
Shorter windows means more fills than gaps. We initialize
FINDWIN (line 3) by creating potential windows at all the
positions where the first alphabet of pattern X occurs in the
sequence Si and pushing these potential windows toQ. Each
windoww inQ contains the starting position in Si, its length,
and a pointer wi. This pointer points to a certain event in
pattern X which we are search for in Si. At every step of
FINDWIN (line 7) we look at the potential window at the top
of the queue Q. We check if the next event in the database
equals the character of the pattern X pointed to by wi and
increment the length of the window w. There are now two
possibilities i) (line 10) The next database event is the same
as the event in X pointed to by wi. If we have found the full
patternX in the database, we add this window toWcand(X).
We can now update our budget if we used more fills than
gaps. Using less gaps in one window allows us to use more
gaps in another. ii) (line 15) The next database event does
not equal the event of X pointed to by we. This means that
the potential window w has one extra gap. We check if this
extra gap is allowed by our budget (line 16). Otherwise, we
drop the window.

Now that we can search for windows of patterns, we

Algorithm 1: FINDWIN(Si, X, budget)

input : sequence S and a pattern X
output : set of windows for X

1 Wcand ← ∅;
2 for p in index−1(x) do
3 w ← (start , length, wi = 1);
4 push(w,Q);

5 while T is not empty do
6 w ← top(Q);
7 (start , length, wi)← w;
8 length = length + 1;
9 if Si [start+ length] equals X [wi] then

10 if wi points to the end of X then
11 append w to Wcand ;
12 b← b+ 2× length(X)− length − 1;

13 else
14 if b+ 2× length(X)− length − 1 < 0 then
15 delete w from Q;

describe how to choose a subset which generates a good
cover C of the database D.

4.3 Candidate Order In the first step of our greedy strat-
egy, we sort the set of patterns in a fixed order, similar to [3].
We call this order the Candidate Order. We cover the
database using windows of patterns in this order. This order
is designed to minimize the code length. This is achieved by
putting longer and more frequently occurring patterns higher
up in the candidate order. This means we can cover more
events while minimizing the code length.

We consider the patterns X ∈ CT in the order,

1. Decreasing ↓ in length | X |

2. Decreasing ↓ in support support(X | D)

3. Decreasing ↓ in length of encoding it with the standard
table.

4. Increasing ↑ lexicographically.

4.4 Greedy Cover We now describe our greedy algorithm
GREEDYCOVER which we use incrementally build a good
cover as pseudo-code in Algorithm 2. We consider patterns
in the candidate order. We maintain a set of selected
windows Wsel . GREEDYCOVER takes this set of selected
windows Wsel and extends it with a subset of candidate
windows of patternX ,Wcand(X), found with FINDWIN and
possibly with (longer, interleaved) windows found on the fly.
We assume that both Wsel and Wcand are sorted.

We refer to a block of windows which are interleaved
or nested with each other as an window extend. For ease of
notation, we refer to windows which are not interleaved or

Algorithm 2: GREEDYCOVER(Wsel ,Wcand)

input : set of selected windows Wsel and a set of
candidate windows Wcand(X) for pattern X .

output : set of selected windows Wsel combined with
those in Wcand(X) not overlapping with Wsel .

1 Wadd ← ∅;
2 Wext ← create window extends from Wsel and

Wcand(X);
3 last ← ∅;
4 for window w ∈Wext do
5 Wtmp ← all windows of X between last and v;
6 for v in Wtmp , in order of decreasing length do
7 if v does not overlap with Wtmp then
8 append v to Wadd ;

9 Wtmp ←Wtmp ∪ { windows of X inside w in D};
10 last ← w ;

11 return Merge Wsel and Wadd ;

nested also as window extends (containing a single window).
We begin GREEDYCOVER by dividing the set Wsel into
a set of window extends Wext by a linear sweep (if Wsel

is sorted). For patterns at the top of the candidate order
Wsel is empty, so we can select all candidate windows
Wcand(X). For any other pattern, we iterate though the
list of window extends Wext (line 4). All the windows
of the pattern occurring between any two extends in Wext

can be potentially chosen. These are put in Wtmp (line
5), a temporary list. It is possible that some windows of
X in Wtmp overlap. We consider these windows in order
of decreasing length (line 6) and discard any window that
overlaps with a previously chosen window. We additionally
search (on the fly) for interleaved windows occurring within
the window extends Wext (line 9).

For example consider the sequence abcdacbd which we
want to cover with the patterns ac and bd. Using FINDWIN
we get two windows each for the two patterns. If ac is higher
up in the candidate order, we first select the two windows
of ac; abcdacbd. We now have two window extends in
Wext . We search for windows of bd within the first window
extend of ac to find one interleaved window: abcdacbd and
we select the second window of bd as it is between the two
window extends of ac.

Note that, GREEDYCOVER now takes time O(|Wsel | +
||D|| + |Wcand | log(|Wcand |)), in the worst case. Where,
|Wsel | is the number of windows in Wsel and |Wcand |
is the number of candidate windows. Let, Wmax(P)

be the maximum number of candidate windows of
any pattern in P . Then GREEDYCOVER takes time
O(|P| (Wmax(P) log(Wmax(P)) + ||D||)) to construct a
cover C of the database D using the patterns P in the code
table CT in the worst case. The maximum number of can-
didate windows of any pattern Wmax(P) is bounded by the

size of the database O(||D||). However, GREEDYCOVER
makes it computationally more efficient to extend the code
table with a new pattern X . We can discard windows of pat-
terns in P below X in the candidate order from the cover
and run GREEDYCOVER for Wcand(X) and the patterns in
the code table below X in candidate order. This means that
we do not have to recompute the cover from scratch. This
is very efficient if the pattern X is near the bottom of the
candidate order. As we shall see GREEDYCOVER is very
competitive in its execution time compared to SQS [20].

Having presented our greedy approach of covering a
database given a set of patterns, we now turn our attention
to the task of mining good set patterns.

5 Mining Good Code Tables
Given a pattern setP we have a greedy algorithm to cover the
database D and obtain the encoded length of the model and
dataL(CT , D). To solve the Minimal Code Table Problem
we want to find that set P of patterns which minimizes
the total encoded length L(CT , D) of the database. As
discussed before, there does not seem to be any trivial sub-
structure in the problem which we can exploit to obtain an
optimal set of patterns P in polynomial time. So, we resort
to heuristics. We build upon and extend SQS-SEARCH [20].

5.1 Generating Candidates We build a pattern set P
incrementally. Given a set of patterns P and a cover C, we
aim to find a patternX and an extension Y , such thatX,Y ∈
P ∪Ω, whose combination XY would decrease the encoded
length L(P ∪ XY,D). We do this until we cannot find any
XY that when added to P reduces the total encode size.
Doing is exactly, however, is computationally prohibitive.
At every iteration, there would be O((|P| + |Ω|)2) possible
candidates. Thus, we again resort to heuristics. We use the
heuristic algorithm ESTIMATE from [20] that can find good
candidates, with likely decrease in code length if added, in
O(|P|+ |Ω|+ ||D||) time. For readability and succinctness,
we describe algorithm ESTIMATE in Appendix A.

Candidates are accepted or rejected based on the com-
pression gain. As we can now find richer covers with inter-
leaving and nesting, candidates are potentially more likely
to be accepted. However, we want to find a succinct set of
patterns which describe the data well. Choicisodes can help
in this search for a succinct summary of the data.

5.2 Choicisodes Recall from Sec. 3.2 that we can encode
patterns as choicisodes. We have the possibility of combin-
ing a newly discovered non-singleton pattern with a previ-
ously discovered non-singleton pattern or choicisode to cre-
ate or expand a choicisode. Combining non-singleton pat-
terns into a single choisisode may hence lead to savings in
the encoded length of the code table L(CT | C) while pro-
viding a more succinct representation of the pattern set.

Algorithm 3: SQUISH(D)

input : database D
output : pattern set P with low L(CT , D)

1 P ← φ;
2 C ← GREEDYCOVER(P, D);
3 while changes do
4 F ← φ;
5 for X ∈ CT do
6 add ESTIMATE(X,A,D) to F ;

7 for Z ∈ F ordered by estimated gain do
8 Sort P ∪ Z in candidate order;
9 Wcand(Z)← FINDWIN(D,Z, budget);

10 C ← GREEDYCOVER(P ∪ Z,D);
11 if L(D,P ∪ Z) < L(D,P) then
12 P ← PRUNE(P ∪ Z,D);

We use a greedy strategy based on MDL for discover-
ing choicisodes. For each newly discovered non-singleton
pattern, we consider all previously discovered non-singleton
patterns or choicisodes which differ with it at one position.
Then, we calculate the increase in code length (of the model)
if we encode it as a choicisode with each of these non-
singleton patterns or choicisodes. We also consider the in-
crease in code length if we encode it as independently. We
choose whichever option with leads to the minimum increase
in code length.

Next we present our algorithm SQUISH for mining a
succinct and representative pattern set.

5.3 The SQUISH algorithm The present the complete
algorithm SQUISH as pseudo-code in Algorithm 3. At each
iteration, it considers each pattern X ∈ CT . It creates
potential extensions XY , with Y ∈ CT , based on estimated
change in the encoded length using ESTIMATE (line 6).
SQUISH then considers each of these patterns in the order
of the estimated decrease in gain if added to CT (line 7).
FINDWIN is used to find the candidate windows of each of
these extensions (line 9). GREEDYCOVER is used to cover
the data with this candidate pattern XY added to CT . We
simultaneously consider the possibility of encoding XY as
a choicisode. If XY leads to a decrease in the encoded
length of the database D then, we add XY to CT . If
XY is to be added, we PRUNE (see Appendix A) the code
table to remove redundant patterns. Consider, for example
if we decide to add abcd, the pattern ab and cd may not be
required to construct an effective cover of the database. We
also consider the singletons occurring in the gaps of XY ,
by constructing new extended patterns by using these gap
alphabets as intermediate alphabets.

6 Related Work
Discovering sequential patterns is an active research topic.
Traditionally there was a focus on mining frequent sequen-
tial patterns, with different definitions of how to count occur-
rences [8, 10, 23]. Mining general patterns, patterns where
the order of events are specified by a DAG is surprisingly
hard. Even testing whether a sequence contains a pattern
is NP-complete [18]. Consequently, research has focused on
mining subclasses of episodes, such as, episodes with unique
labels [1,12], strict episodes [19], and injective episodes [1].

Traditional pattern mining typically results in overly
many and highly redundant results. Once approach to
counter this is mining statistically significant patterns. Com-
puting the expected frequency of a sequential pattern under
a null hypothesis is very complex, however [13, 17].

SQUISH builds upon and extends SQS [20]. Both draw
inspiration from the KRIMP [22] and SLIM [16] algorithms.
KRIMP pioneered the use of MDL for mining good patterns
from transaction databases. Encoding sequential data with
serial episodes is much more complicated, and hence SQS
uses a much more elaborate encoding scheme. Here, we
extend it to discover richer structure in the data. The SLIM
algorithm [16] mines KRIMP code table directly from data.
SLIM iteratively seeks to improve the current model by
considering as candidates joins XY of patterns X,Y ∈ CT .
Whereas SLIM considers the full Cartesian product and ranks
on the basis of estimated gain, SQS and SQUISH take a batch
based approach.

Lam et al. introduced GOKRIMP [7] for mining sets of
serial episodes. As opposed to the MDL principle, they use
fixed length codes, and do not punish gaps within patterns.
This means, their goal is essentially to cover the sequence
with as few patterns as possible, which is different from our
goal of finding patterns that succinctly summarize the data.

Recently, Fowkes and Sutton proposed the ISM algo-
rithm [4]. ISM is based on a generative probabilistic model of
the sequence database, and uses EM to search for that set of
patterns that is most likely to generate the database. ISM does
not explicitly consider model complexity. Like SQUISH, ISM
can handle interleaving and nesting of sequences. We will
empirically compare to ISM in the experiments.

7 Experiments
Next we empirically evaluate SQUISH on synthetic and real
world data. We compare against SQS [20] and ISM [4]. All
algorithms were implemented in C++. We provide the code
for research purposes.1

We evaluate quantitatively on the basis of achieved com-
pression, pattern recall, and execution times. Specifically,
we consider the compression gain ∆L = L(D,ST) −
L(D,CT). That is, the gain in compression using dis-

1http://eda.mmci.uni-saarland.de/squish/

Table 1: Database Statistics

Dataset |Ω| |D| ||D|| L(D,ST)

Indep 1k 1 10k 103 630
Plant-10 1k 1 10k 103 340
Plant-50 1k 1 10k 102 630
Parallel 25 10k 1M 4 644 290

Sign 267 730 38 689 271 232
Gazelle 497 59k 209 240 1 179 030
Address 5 295 56 62 066 685 593
JMLR 3 846 788 75 646 772 112
Moby 10 277 1 105 719 1 250 149

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

number of patterns

Pa
tte

rn
re

ca
ll

SQUISH

ISM

0 200 400 600

6.78

6.8

6.82

6.84

6.86 ·10
5

time (s)

L
(C

T
,
D
)

SQUISH

SQS

Figure 3: (left) Recall of interleaving patterns (higher is
better) for SQUISH and ISM on Parallel. (right) Runtime of
SQUISH and SQS in seconds vs. encoded length of databases
for Addresses (lower is better).

covered patterns versus using the singleton-only code table.
Higher scores are better. All experiments were executed sin-
gle threaded on quad-core Intel Xeon machines with 32GB
of memory, running Linux.

Databases We consider four synthetic, and five real
databases. We give their base statistics in Table 1.

Indep, Plant-10, and Plant-50 are synthetic data consist-
ing of a single sequence of 10 000 events, over an alphabet
of 1000 events. For Indep, all events are independent. For
Plant-10, and Plant-50 we plant resp. 10 and 50 patterns of
5 events long 10 times each over an otherwise independent
sequence, with a 10% probability of having a gap between
consecutive events. To evaluate the ability of SQUISH to dis-
cover interleaved and nested patterns, we consider the Paral-
lel database [4]. Each event in this database is generated by
five independent parallel processes chosen at random. Each
process i generates the events {ai, bi, ci, di, ei} in sequence.

We further consider five real data sets. Gazelle is click-
stream data from an e-commerce website [6]. The Sign
database is a list of American sign language utterances [11].
To allow for interpretability we also consider text data. Here
the events are the (stemmed) words in the text, with stop
words removed. Addresses contains speeches of American

http://eda.mmci.uni-saarland.de/squish/

Table 2: Comparing SQS and SQUISH. Results for SQUISH using resp. disjoint serial episodes, interleaving serial episodes,
and interleaving serial episodes and choicisodes. Given are the number of non-singleton patterns (|P|), time to finish (t),
time reach the same score as SQS (SQS-t), and the gain in compression ∆L (higher is better).

SQUISH

SQS Disjoint Interleaving Choisisodes

Dataset |P| t ∆L |P| SQS-t t ∆L |P| SQS-t t ∆L |P| SQS-t t ∆L

Sign 127 81s 15.5k 157 3.0s 59s 22.5k 156 4.3s 132s 22.7k 93 4.3s 103s 23.5k
Gazelle 934 26m 14.7k 880 1.5s 76m 160.4k 901 0.6s 96m 161.6k 605 1.4s 159m 165.7k
Addresses 155 5m 5.4k 181 3.9s 4m 6.5k 182 3.9s 7m 6.5k 126 3.9s 12m 7.3k
JMLR 580 8m 29.2k 583 5.4s 67m 37.2k 593 6.5s 87m 37.7k 334 5.6s 420m 40.9k
Moby 231 46m 9.6k 231 3m 23m 10.9k 328 270s 39m 10.9k 224 20.3s 66m 12.5k

Table 3: Sample choicisodes discovered by SQUISH in the
Addresses and JMLR datasets.

Presidential Addresses

1. [coordin. | execut.] branch govern
2. fellow [citizen | american | countrymen]
3. [discharg | perform | commenc] duti
4. god [bless | help]
5. [exercise | grant | balanc] power
6. power [grant | vest]
7. [eighteenth | fifteenth | fourteenth] amendment
8. [guard | war] against

JMLR Abstracts

1. [high | curse | low] dimension.
2. [empirical | structural] risk minimisation
3. [independent | principle] component analysis
4. paper [proposes | presents] new
5. [Mahalanobis | edit | Euclidean | pairwise] distance
6. [data | train] set
7. [conditional |Markov] random field
8. [gradient | coordinat.] descent

presidents. JMLR contains abstracts from the Journal of
Machine Learning research, and Moby is the famous novel
Moby Dick by Herman Melville.

Synthethic Data As a sanity check we first compare to SQS
considering only serial episodes and not allowing interleav-
ing or nesting. We find that in this setting SQUISH performs
on par with SQS in terms of recovering non-interleaving pat-
terns from synthetic data; like SQS it correctly discovers no
patterns from Indep, it recovers all patterns from Plant-10,
and recovers 45 patterns exactly from Plant-50 and frag-
ments of the remaining 5, but does so approximately ten
times faster than SQS.

To investigate how well SQUISH retrieves interleaving
patterns, we consider the Parallel dataset, and compare to

ISM. (We also considered SQS but found it did not finish
within a day.) To make the comparison fair, we restrict
ourselves again to serial episodes, but now do allow for
interleaving and nesting. We measure success in terms of
pattern recall. That is, given a set of patterns P and a set
of target patterns T , we consider the set T as the data and
cover it with P (not allowing for gaps). The pattern recall
is the ratio of the total number covered events in T to the
maximum of the total number of events in T or P .

We give the results in Fig. 3. We find that SQUISH
obtains much higher recall scores than ISM. Inspecting
the results, we see that SQUISH discovers large fragments
of each pattern, whereas ISM retrieves only eight small
patterns, most of length 2, and hence does not reconstruct
the generating set of patterns well.

Real data Next we evaluate SQUISH on real data. We
compare to SQS in terms of number of patterns, achieved
compression, and runtime. We consider three different
configurations, 1) disjoint covers of only serial episodes,
2) allowing interleaving and nesting of serial episodes, and
3) allowing interleaving and nesting of serial episodes and
choicisodes. We give the results in Table 2.

First of all, the SQS-t columns show that in all setups
SQUISH needs only a fraction of the time—up to three
orders of magnitude less—to discover a model that is at least
good as what SQS returns. To fully converge, SQUISH and
SQS take roughly the same amount of time for the disjoint
setting, as well as when we do allow interleaving. However,
when converged SQUISH discovers models with much better
compression rates, i.e. with much higher ∆L, than SQS does.
SQUISH is also significantly faster than ISM, taking only
87 minutes instead of 259 on the JMLR database, and on
Gazelle SQUISH requires only 96 instead of 680 minutes.

SQUISH performs best when we consider our rich-
est description language, allowing both interleaving and
choicisodes, discovering much more succinct models that
obtain much better scores than if we restrict ourselves. For
example, for Gazelle, with choicisodes enabled SQUISH

needs only 605 instead of 901 patterns to achieve a ∆L of
165.7k instead of 161.6k. Overall, we observe that many
choicisodes form semantically coherent groups. We present
a number of exemplar choisisode patterns in Table 3. In-
teresting examples include: data-set and training-set from
JMLR, god-bless and god-help from Address, cape-horn and
cape-cod from Moby.

Last, but not least, we report on the convergence of
L(CT , D), the encoded length of the database, over time
for both SQUISH and SQS in Fig. 3. Both algorithms
estimate batches of candidates, and test them one by one
tests. We see that the initial candidates are highly effective
on increasing compression gain. Candidates generated in the
latter iterations lead to only little increase in compression
gain. This leads to the possibility of executing SQUISH based
upon a time budget, as an any-time algorithm.

8 Conclusion
We considered summarising event sequences. Specifically,
we aimed at discovering sets of patterns that capture rich
structure in the data. We considered interleaved, nested,
and partial pattern occurrences. We proposed the algorithm
FINDWIN to efficiently search for pattern occurrences and
the greedy algorithm GREEDYCOVER for efficiently cover-
ing the data. Experiments show that SQUISH works well in
practice, outperforming the state of the art by a wide margin
in terms of scores and speed, while discovering pattern sets
that are both more succinct and easier to interpret.

As future work we are considering parallel episodes,
patterns where certain events are un-ordered e.g.
a {b, c} d [10]. Discovering such structure presents a
significant computational challenges and requires novel
scores and algorithms.

Acknowledgements
Apratim Bhattacharyya and Jilles Vreeken are supported
by the Cluster of Excellence “Multimodal Computing and
Interaction” within the Excellence Initiative of the German
Federal Government.

References

[1] A. Achar, S. Laxman, R. Viswanathan, and P. Sastry. Dis-
covering injective episodes with general partial orders. Data
Min. Knowl. Disc., 25(1):67–108, 2012.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. In VLDB, pages 487–499, 1994.

[3] R. Bertens, J. Vreeken, and A. Siebes. Keeping it short

and simple: Summarising complex event sequences with
multivariate patterns. In KDD, pages 735–744, 2016.

[4] J. Fowkes and C. Sutton. A subsequence interleaving model
for sequential pattern mining. In KDD, 2016.

[5] P. Grünwald. The Minimum Description Length Principle.
MIT Press, 2007.

[6] R. Kohavi, C. Brodley, B. Frasca, L. Mason, and
Z. Zheng. KDD-Cup 2000 organizers’ report: Peel-
ing the onion. SIGKDD Explor., 2(2):86–98, 2000.
http://www.ecn.purdue.edu/KDDCUP.

[7] H. T. Lam, F. Mörchen, D. Fradkin, and T. Calders. Mining
compressing sequential patterns. In SDM, 2012.

[8] S. Laxman, P. Sastry, and K. Unnikrishnan. A fast algorithm
for finding frequent episodes in event streams. In KDD, pages
410–419. ACM, 2007.

[9] M. Li and P. Vitányi. An Introduction to Kolmogorov Com-
plexity and its Applications. Springer, 1993.

[10] H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery
of frequent episodes in event sequences. Data Min. Knowl.
Disc., 1(3):259–289, 1997.

[11] P. Papapetrou, G. Kollios, S. Sclaroff, and D. Gunopulos.
Discovering frequent arrangements of temporal intervals. In
ICDM, pages 354–361. IEEE, 2005.

[12] J. Pei, H. Wang, J. Liu, K. Wang, J. Wang, and P. S. Yu.
Discovering frequent closed partial orders from strings. IEEE
TKDE, 18(11):1467–1481, 2006.

[13] F. Petitjean, T. Li, N. Tatti, and G. I. Webb. Skopus: Mining
top-k sequential patterns under leverage. Data Min. Knowl.
Disc., 30(5):1086–1111, 2016.

[14] J. Rissanen. Modeling by shortest data description. Automat-
ica, 14(1):465–471, 1978.

[15] J. Rissanen. A universal prior for integers and estimation by
minimum description length. Annals Stat., 11(2):416–431,
1983.

[16] K. Smets and J. Vreeken. SLIM: Directly mining descriptive
patterns. In SDM, pages 236–247. SIAM, 2012.

[17] N. Tatti. Ranking episodes using a partition model. Data
Min. Knowl. Disc., 29(5):1312–1342, 2015.

[18] N. Tatti and B. Cule. Mining closed episodes with simultane-
ous events. In KDD, pages 1172–1180, 2011.

[19] N. Tatti and B. Cule. Mining closed strict episodes. Data
Min. Knowl. Disc., 25(1):34–66, 2012.

[20] N. Tatti and J. Vreeken. The long and the short of it:
Summarizing event sequences with serial episodes. In KDD,
pages 462–470. ACM, 2012.

[21] N. Vereshchagin and P. Vitanyi. Kolmogorov’s structure
functions and model selection. IEEE TIT, 50(12):3265–
3290, 2004.

[22] J. Vreeken, M. van Leeuwen, and A. Siebes. KRIMP: Mining
itemsets that compress. Data Min. Knowl. Disc., 23(1):169–
214, 2011.

[23] J. Wang and J. Han. Bide: Efficient mining of frequent closed
sequences. ICDE, 0:79, 2004.

Algorithm 4: ESTIMATE(X,C,D). Heuristic for
finding pattern XY with low L(D,CT ∪XY)

input : database D, cover C, and pattern X
output : pattern XY with low L(D,CT ∪XY)

1 foreach Y ∈ CT do
2 VY ← ∅; WY ← ∅; UY ← ∅; dY ← 0;

3 T ← ∅;
4 foreach window v of X in cover C do
5 (a, b,X, k)← v;
6 d← end index of window following v in C;
7 t ← (v, d, 0); l(t)← d− a;
8 add t into T ;

9 while T is not empty do
10 t← argminu∈T l(u);
11 (v, d, s)← t; a← first index of v;
12 w = (c, d, Y, k)← active w of Y ending at d;
13 if Y = X and (event at a or d is marked) then
14 delete t from T ;
15 continue;

16 if Sk[a, d] is a minimal window of XY then
17 add v into VY ;
18 add w into WY ;
19 add (a, d,XY , k) into UY ;
20 dY ← min(div(V,W,U ;A) + s, dY);
21 if |Y | > 1 then
22 s← s+ gain(w);

23 if Y = X then
24 mark the events at a and d;
25 delete t from T ;
26 continue;

27 if w is the last window in the sequence then
28 delete t from T ;
29 else
30 d← end index of the active w′ following w;
31 update t to (v, d, s) and l(t) to d− a;

A Appendix
A.1 Estimating Candidates Here we describe our heuris-
tic strategy for finding new candidates of the form XY as in
Sec. 5.1. First, we need two crucial observations.

Constant Time Difference Estimation Given a database
D and an cover C. Let P and Q be two patterns. Let
V = {v1, ..., vN} and W = {w1, ..., wN} be two set
of windows for P and Q, respectively. Both V and W
occur in C. Each of these windows vi and wi occur
in the same sequence. Given the start positions and end
positions of the pattern in sequence ki, we can write them
as vi = (ai, bi, P, ki) and wi = (ci, di, Q, ki). Let U
be the set of windows produced by combining them, U =

(a1, d1, R, k1), ..., (aN , dN , R, kN). Let the windows in
U be disjoint and the windows in U be disjoint with the
windows in C \ (V ∪W). Then the difference L(D,C ∪U \
(V ∪W))−L(D,C) depends only N , gaps(V), gaps(W),
and gaps(U) and can be computed in constant time from
these values.

Shorter Windows in Optimal Cover Given a database D
and an cover C. Let v = (i, j,X, k) ∈ C. Assume
that there exists a window S [a, b] containing X such that
w = (a, b,X, l) does not overlap with any window in C and
b− a < j − i. Then C is not an optimal cover.

We refer the reader to [20] for detailed proofs.
We present our heuristic procedure ESTIMATE as

pseudo-code in Algorithm 4. In this algorithm, given pat-
tern X and a cover C, for a possible extension Y , we enu-
merate the windows of XY from the shortest to the longest.
These windows are constructed by combining two windows
in the cover C. We maintain the sets VY , WY and UY (line
1), containing windows of X , windows of Y (to be com-
bined together), and new windows of XY (resulting from
the combination) respectively. We do this for every possi-
ble extension Y in the code table. At each step we com-
pute the difference in code length of using these windows
instead. We maintain dY to store this difference. By the ob-
servation Constant Time Difference Estimation, this can
be done in constant time. We prefer patterns XY which are
frequently occurring, with more fills than other meta stream
characters. Thus, we want to find shorter windows of XY
first. Such a set of windows U could potentially lead to a
estimated decrease in code length. Therefore, to ensure that
we find shorter windows first and efficiency, we search for
all windows (all possible Y) simultaneously using a priority
queue T and look only at windows in the cover C. For each
window of X in the cover C, we look at windows after it
to construct windows XY (Y is the pattern of the window
following the window ofX). We initialize the priority queue
T with these windows (line 4-9), sorted based on length. At
each step of the candidate generation algorithm, we retrieve
once such window of XY from the priority queue T (line
11) add it to our list UY of windows of XY and estimate the
change in code length (line 22). As we do not allow overlaps,
we need to ensure that windows in UY are not overlapping.
If a window ofXY overlaps with any other window inC, we
cannot use both of these windows at the same time. We take
this into account by subtracting the gain(w) of this window
w overlapping with the window of XY (line 23) [20]. The
gain(w) of a window w if a upper bound on the bits gained
by encoding the events in the database with this window vs.
encoding them as singletons. We define the gain as in [20]
for a window w of the pattern Y (Sk[i, j]),

gain(w) =− L(codep(X))− (j − i− |X|)L(codeg(X))

− (|X| − 1)L(codef (X)) +
∑
x∈X

L(codep(x)) .

Overlapping could also happen if Y = X . So we simply
check if the adjacent scans have already used these two
instances of X for creating a window for pattern XX (line
25). We now extend our search by looking at the window
following the currently considered window of Y in the cover
C (line 34). As we allow interleaving and nesting in our
covers, we also look at possible windows Y occurring inside
or interleaved with windows of other patterns. That is, we
look at singletons inside gaps of windows. For each window
X in the cover C, we look at all windows following it, until
we reach the window of X or the end of the cover.

A.2 Pruning the Code Table Here, we present the algo-
rithm we use to prune the code table CT , used at line 12 of
SQUISH as pseudo-code in Algorithm 5.

Algorithm 5: PRUNE(P, D)

input : Pattern set P , database D
output: Pruned pattern set P;

1 foreach X ∈ P do
2 CT ← code table corresponding to

GREEDYCOVER(D,P);
3 CT ′ ← code table obtained from CT by

deleting X;
4 g ←

∑
w=(i,j,X,k)∈C gain(w);

5 if g < L(CT)− L(CT ′) then
6 if L(D,P \X) < L(D,P) then
7 P ← P \X;

	Introduction
	Preliminaries
	Notation
	Brief introduction to MDL

	MDL for Event Sequences
	Decoding a database
	Calculating Encoded Lengths

	Covering a Database
	Window Lengths
	Window Search
	Candidate Order
	Greedy Cover

	Mining Good Code Tables
	Generating Candidates
	Choicisodes
	The SQUISH algorithm

	Related Work
	Experiments
	Conclusion
	Appendix
	Estimating Candidates
	Pruning the Code Table

