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Abstract Given a snapshot of a large graph, in which an infection has been
spreading for some time, can we identify those nodes from which the infection
started to spread? In other words, can we reliably tell who the culprits are? In
this paper we answer this question affirmatively, and give an efficient method
called NetSleuth for the well-known Susceptible-Infected virus propagation
model.

Essentially, we are after that set of seed nodes that best explain the given
snapshot. We propose to employ the Minimum Description Length (MDL)
principle to identify the best set of seed nodes and virus propagation ripple,
as the one by which we can most succinctly describe the infected graph.

We give an highly efficient algorithm to identify likely sets of seed nodes
given a snapshot. Then, given these seed nodes, we show we can optimize the
virus propagation ripple in a principled way by maximizing likelihood. With all
three combined, NetSleuth can automatically identify the correct number
of seed nodes, as well as which nodes are the culprits.

Experimentation on our method shows high accuracy in the detection of
seed nodes, in addition to the correct automatic identification of their number.
Moreover, NetSleuth scales linearly in the number of nodes of the graph.
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1 Introduction

When considering large graphs, epidemics are everywhere. For social networks,
infectious diseases like the flu are prime examples, but hypes/memes are sim-
ilarly epidemic in nature; whether it is friends discussing that latest gadget or
phone, or sharing a funny video, there are nodes ‘infecting’ each other. Simi-
larly, a computer virus can cause an epidemic in a computer network, as can
a contaminant in a water distribution network. In each of these cases, given a
single snapshot of a partially infected network, an important and challenging
research question is how we can reliably identify those nodes from which the
epidemic started; whether for inoculation to prevent future epidemics, or for
exploitation for viral marketing.

As such, given a snapshot of a large graph G(V, E) in which a subset of
nodes V ′ ⊆ V is currently infected, and assuming the Susceptible-Infected
(SI) propagation model, we consider the problem of how to efficiently and
reliably find those seed nodes S ⊆ V ′ from which the epidemic started, without
requiring the number of seed nodes in advance. In other words, we address the
questions: How many culprits are there, and who are they?

We propose to employ the Minimum Description Length (MDL) princi-
ple [29; 15] to identify that set of seed nodes and virus propagation ripple
that most succinctly describes the given snapshot. We give an highly efficient

Fig. 1. Example: Culprits, how many, and which ones? A snapshot of a 2D
grid network in which an infection has been stochastically spreading. Grey
circles indicate infected nodes, while Grey dots are not infected. The 2 Blue
stars denote seeds from which the data was generated. The 2 Red diamonds
denote the seeds automatically discovered by NetSleuth—that is, both in
number (two) and location. As the picture shows, the discovered seeds are
spatially very close to the true seeds. Moreover, for this random snapshot, the
discovered seeds obtain better likelihood and MDL scores than the true seeds.
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Table 1. Comparison between three culprit-identifying methods: Net-
Sleuth, Rumor-centrality [35], and Effectors [18]

infection k>1 automatically O(·)†
model determines k

NetSleuth (our method) SI X X Linear
Rumor-centrality [35] SI – – Quadratic
Effectors [18] IC X – Quadratic

† Running time given for arbitrary graphs.

algorithm to identify likely seed nodes, and show we can easily optimize the
description length of the virus propagation ripple for a given seed set by greed-
ily maximizing likelihood. As such, we can identify the best set of seed nodes
in a principled manner, without having to require the user to choose k, the
number of seed nodes, in advance.

As an example, consider Figure 1. It depicts an example grid-structured
graph, in which a subgraph has been infected by a stochastic process starting
from two seed nodes. The plot shows the true seed nodes, as well as the seed
nodes automatically identified by NetSleuth; it finds the correct number of
seed nodes, and places these where a human would; in fact, the discovered
seeds have a higher likelihood for generating this infected subgraph than the
true seed nodes.

We develop a two step approach by first finding high-quality seeds given the
number of seeds, and then using our carefully designed MDL score to pinpoint
the true number of seeds. For the first part, we use the notion of ‘exoneration’
from the un-infected frontier—e.g., in Figure 1 the nodes on the edge of the
infected snapshot are unlikely to be the culprits due to the large number of
un-infected nodes surrounding them. Based on this idea, we develop a novel
‘submatrix-laplacian’ method to find out the best seed sets given a number
of seeds (see Section 5 for more details). Given these seed-sets, we also give
an efficient algorithm to compute the MDL scores, thus finding the number of
seeds in a parameter-free way.

Although network infection models have been researched extensively, iden-
tifying the seed nodes of an epidemic is surprisingly under studied. We are,
however, not the first to research this problem. Recently, Shah and Zaman
[34, 35] developed rumor-centrality for identifying the single source node of
an epidemic. In contrast, we allow for multiple seed nodes, and automatically
determine their number. Lappas et al [18] studied the ‘Effectors’ problem of
identifying k seed nodes in a steady-state network snapshot, under the Inde-
pendent Cascade (IC) model. In contrast, we study the Susceptible–Infected
(SI) model, can consider snapshots from any time point during the epidemic,
and our approach is parameter-free as by MDL we can automatically identify
the best value for k. Furthermore, and very importantly for large graphs, in
comparison our method is computationally very efficient. Table 1 gives a com-
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parison of NetSleuth to these methods. We discuss related work in more
detail in Section 2.

Experimentation shows that NetSleuth detects seed nodes and automat-
ically identifies their number, both with high-accuracy. With synthetic data
we show it can handle difficult fringe cases, and is in agreement with human
intuition. We show we reliably identify the correct number of seed nodes on
real data, and also that our detected seeds are of very high quality (measured
by multiple metrics). Finally, we show our method scales linearly with the
number of edges of the graph.

The remainder of the article is organized straightforwardly. We discuss
related work next in Section 2. Then in Section 3, we will discuss notation
and give quick introductions to the SI model and the Minimum Description
Length principle. Next, in Section 4, we formalize the problem of identifying
culprits using MDL. We develop our proposed method for mining good seed
sets, NetSleuth, in Section 5. We experimentally evaluate NetSleuth in
Section 6. We round up with discussion and conclusions resp. in Section 7
and 8. For readability, we postpone the proofs to the Appendix.

2 Related Work

As mentioned in the introduction, although diffusion processes have been
widely studied, the problem of ‘reverse engineering’ the epidemic has not re-
ceived much attention, except papers by Shah and Zaman [34, 35] and Lappas
et al [18].

Shah and Zaman [34, 35] formalized the notion of rumor-centrality for
identifying the single source node of an epidemic under the SI model, and
showed an optimal algorithm for d-regular trees.

Lappas et al [18] study the problem of identifying k seed nodes, or effectors
of a partially activated network, which is assumed to be in steady-state under
the IC (Independent-Cascade) model. In contrast, we allow for (a) multiple
seed nodes, (b) a snapshot from any time during the infection, and (c) find
the number of seeds automatically, even for general graphs. Finally we are
also more efficient with linear time on edges of the infected graph. Also we
are, to the best of our knowledge, the first to employ MDL with the goal of
identifying culprits.

Work related to identifying sources of infection can be categorized into
three main parts: epidemic thresholds, information diffusion and ecology. Most
of these works either consider only single virus models or typically use only
simulation or analyze on very restricted underlying networks. There is a lot
of research interest in studying different types of information dissemination
processes on large graphs in general, including (a) information cascades [2;
12; 42], (b) blog propagation [21; 14], and (c) viral marketing and product
penetration [19].
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Epidemic Thresholds The canonical text-book for epidemiological models like
SI is Anderson and May [1]. Much research in virus propagation studied the
so-called epidemic threshold, that is, to determine the condition under which
an epidemic will not break out [17; 24; 5; 11]. Prakash et al [26, 27] in addition
discuss that the leading eigenvalue and a model-dependent constant are the
only parameters that determine the epidemic threshold for almost all virus
propagation models.

Influence Maximization An important problem under the viral marketing set-
ting is the influence maximization problem [28; 16; 13; 6; 32]. Another remotely
related work is outbreak detection [20] in the sense that we aim to select a
subset of ‘important’ nodes on graphs.

Immunization Another related problem for such propagation processes is im-
munization - the problem of finding the best nodes for removal to stop an epi-
demic, with effective immunization strategies for static and dynamic graphs [38;
3; 25].

Minimum Description Length We are not the first to use the Minimum De-
scription Length principle [29; 15] for a data mining purpose. Faloutsos and
Megalooikonomou [10] argue many data mining problems are related to Kol-
mogorov Complexity, which means they can be practically solved through
compression. Examples of MDL based solutions include clustering [7], pattern
set mining [40], outlier detection [36], and community detection [4]. We are,
to the best of our knowledge, however, the first to employ MDL with the goal
of identifying culprits.

3 Preliminaries

In this section we introduce notation we will use throughout the paper, we
discuss preliminaries regarding the Minimum Description Length (MDL) prin-
ciple as well as for the Susceptible-Infected (SI) model—the virus infection
spreading model we use.

3.1 Notation

In Table 2 we give an overview of the most important notation and symbols we
will use in the paper. We consider undirected, unweighted graphs G = (V, E)
of N = |V| nodes. The degree of a node i is denoted by d(i). We indicate by
GI = (VI , EI) the infected subgraph of G. By EF ⊆ E we denote the all edges
in G connecting with nodes in VI .

All logarithms are to base 2, and we adopt the standard convention that
0 log 0 = 0. We denote the transpose of any matrix or vector V as V T . Finally
note that LA is a submatrix of L(G), not the laplacian matrix of GI .
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Table 2. Terms and Symbols

Symbol Definition and Description

SI model Susceptible-Infected model
β attack probability of the virus in the SI model
G = (V, E) graph under consideration
GI = (VI , EI) given infected subgraph of G
R ripple, an ordered list of, per iteration, a set of nodes how the virus

propagates
N |V|, number of nodes in graph G
NI |VI |, number of nodes in graph GI

d(i) degree of node i
F set of un-infected nodes having at least one infected neighbor (in VI)
Ft

i set of un-infected nodes having i infected neighbors (in VI) at time
step t

EF set of edges connecting nodes in F to VI
A(G) adjacency matrix of graph G (size N ×N)
A adjacency matrix of GI (size NI ×NI)
D(G) diagonal degree matrix of graph G
L(G) laplacian matrix of G i.e. L(G) = D(G)−A(G)
LA submatrix (size NI×NI) of L(G) corresponding to the infected graph

GI

QMDL MDL-based culprits quality measure (see Section 6)
QJD set-Jaccard-distance-based culprits quality measure (see § 6)

3.2 The Susceptible-Infected Model

One of the most widely studied epidemic models is the so-called ‘Susceptible-
Infected’ (SI) model [1]. In this model, each object/node in the underlying
graph is in one of two states: Susceptible (S) or Infected (I). Once infected,
a node stays infected forever. At every time-step, each of the infected nodes
tries to infect each of its uninfected neighbors independently with probability
β, the model parameter that reflects the strength of the virus.

It is important to note that 1/β defines a natural time-scale, as intuitively
it is the expected number of time-steps for a successful attack over an edge. As
an example, if we assume that the underlying network is a clique of N nodes,
under continuous time, the model can be written as:

dI(t)

dt
= β(N − I(t))I(t) , (1)

where I(t) is the number of infected nodes at time t—the solution is the logistic
function and it is invariant to β×t. Finally note that given any starting point,
the whole network will eventually get infected. Hence, closer is the infection to
completion (infecting everyone), harder it is to detect the culprits. Below, we
will consider a discrete time set-up in which the duration of one time-slice is
defined by 1/β. That is, for low β we consider a lower time resolution than for
high β. This corresponds with intuition, as by the higher infection probability,



Efficiently Spotting the Starting Points of an Epidemic in a Large Graph 7

the latter case will be much more eventful if we would consider a fixed time
resolution.

3.3 Minimum Description Length Principle

The Minimum Description Length principle (MDL) [29; 15], like its close cousin
Minimum Message Length (MML) [41], is a practical version of Kolmogorov
Complexity [22]. All three embrace the slogan Induction by Compression. For
MDL, this can be roughly described as follows.

Given a set of modelsM, the best model M ∈M is the one that minimizes

L(M) + L(D |M) ,

in which

L(M) is the length in bits of the description of M , and
L(D |M) is the length of the description of the data encoded with M .

This is called two-part MDL, or crude MDL—as opposed to refined MDL,
where model and data are encoded together [15]. We use two-part MDL be-
cause we are specifically interested in the model: the seed nodes and ripple
that give the best description. Further, although refined MDL has stronger
theoretical foundations, it cannot be computed except for some special cases.

To allow for fair comparison between different M ∈ M, MDL requires us
to define a lossless encoding. However, as our goal is to measure complexity
of a description, we are only concerned with code lengths, not actual code
words—compression is not our goal, but a means to identify good models.

In order to use MDL, we have to define what our models M are, how a
M ∈M describes the data at hand, and how we encode this all in bits.

4 Our Problem Formulation

Loosely speaking, given a snapshot of an infected graph, our goal is to obtain
the most succinct explanation of ‘what happened’. To do so, we require two
ingredients: the first is a formal objective—a cost function—which we discuss
in this section. The second is then an algorithm to find good solutions, which
we give in Section 5. In this Section we will formalize the problem in terms of
the MDL principle.

Our cost function will consist of two parts, 1) scoring the seed set (Model
cost) and 2) scoring the successive infected nodes starting from the seed (Data
cost).

We assume that both sender and receiver already know the layout of G =
(V, E), yet the receiver does not know yet which nodes are in GI = (VI , EI).
That is, in the general terms of MDL we gave in Section 3.3, GI the data D we
want to describe using a set of seed nodes M ∈ M. As such, informally, our
goal is to identify those nodes, and an infection propagation ripple starting
from those nodes, by which GI can most easily be described.
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4.1 Cost of the Model

As our models we consider seed sets. A seed set S ⊆ VI is a subset of |S|
nodes of GI from which the infection starts spreading—the ‘patients zero’, so
to speak. We denote by L(S) the encoded length, in bits, of a seed set S.

To describe a seed set S, we first have to encode how many nodes S con-
tains. This number, |S|, is upper-bounded by the number of nodes in G. Hence,
we can encode |S| in as many as logN bits, by which we spend equally many
bits to encode either a small or a large number—essentially a uniform prior.
In general, however, we favor small seeds sets: simple explanations. Hence, the
MDL optimal Universal code for integers [30] is a better choice, as it already
rewards smaller seed sets by requiring fewer bits to encode their size. With
this encoding, LN, the number of bits to encode an integer n ≥ 1 is defined as

LN(n) = log∗(n) + log(c0) ,

where log∗ is defined as log∗(n) = log(n) + log log(n) + · · · , where only the
positive terms are included. By choosing c0 as

c0 =
∑
J≥1

2−LN(j) ≈ 2.865064 ,

we ensure the Kraft inequality is satisfied, and hence that LN a valid encoding.
That is, all probabilities sum to ≤ 1.0.

To identify which nodes in G are seed nodes, we use the very efficient
class of data-to-model codes [39]. A data-to-model code is essentially an index
into a canonically ordered enumeration of all possible data (values) given the
model (the provided information). Here, we know |S| unique nodes have to be
selected out of N , for which there are

(
N
|S|
)

possibilities. Assuming a canonical

order, log
(
N
|S|
)

gives us the length in bits of an index to the correct set of node

ids.
Combining the above, we now have L(S) for the number of bits to identify

a seed set S ⊆ VI as

L(S) = LN(|S|) + log

(
N

|S|

)
(2)

4.2 Cost of the Data given the Model

Next, we need to describe the infected subgraph GI given a seed set S. We do
this by encoding the infection propagation ripple, or the description of ‘what
happened’. Starting from the seed nodes, per time step we identify that set of
nodes that gets infected at this time step, iterating until we have identified all
the infected nodes.1

1 When not interested in the actual ripple R, one could encodeGI by its overall probability
starting from S. Obtaining this probability, however, is very expensive, even by MCMC
sampling. As we will see in Sections 5 and 6 computing a good ripple is both cheap and
gives good results.
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4.2.1 Propagation ripples

More formally, a propagation ripple R is a list of node ids per time-step t,
which represents the order in which nodes of GI became infected, starting
from S at time t = 0. Let us write VtI(S, R) to indicate the set of infected
nodes at time t starting from seed set S and following ripple R, with V0

I = S.
For readability, we do not write S and R wherever clear from context. As such,
a valid propagation ripple R is a partitioning of node ids VI \ S of GI , where
every node in a part is required to have an edge from a node j ∈ Vt−1I .

Clearly, however, not every ripple from the seed set to the final infected
subgraph is equally simple to describe. For instance, the more infected neigh-
bors an uninfected node has, the more it is under constant attack, and hence
the more likely it is that it will get infected. As such, it should be more suc-
cinct to describe that a node under more heavy attack gets infected, than it
would cost to describe the infection of a node only under single attack.

4.2.2 Frontier sets

To encode a ripple R, at each time t we consider the collection of nodes cur-
rently under attack given the SI model (i.e. non-infected nodes with currently
at least one infected neighbor, or if t = 0, neighbors to a seed-node ∈ S). We
refer to this set as F t, for the frontier-set at time t. Define attack degree a(n)
of a non-infected node n as the number of infected neighbor nodes it has at
the current iteration, i.e. a(n) = |{j ∈ V | ejn ∈ E ∧Xj(t)}|, in which Xj(t) is
an indicator function for whether node j is infected at time t.

We divide F t into disjoint subsets F ti per attack degree i, that is, into sets
of nodes having the same attack degree. As such, we have F t = F t1 ∪F t2 ∪ . . .,
and correspondingly f t1, f

t
2, . . . for the sizes of these subsets (we will drop using

the t superscript, when clear from context).
Starting from the seed set, for every time step t the receiver can easily

construct the corresponding frontier set F t—which leaves us to transmit which
of the nodes, if any, in the frontier set got infected in the current iteration.
As, however, the infection probabilities per attack degree differ, we transmit
this information per F td.

4.2.3 Probability of Infection

The SI model assumes an attack probability parameter β—so, the independent
probability pd of a node in Fd being infected is: pd = 1 − (1 − β)d. Given pd
we can write down the probability distribution of a total of md nodes being
infected for each subset Fd. This is simply a Binomial with parameter pd i.e.

p(md | fd, d) =

(
fd
k

)
pmd

d (1− pd)fd−md

Hence, as such, a value for β determines p.
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4.2.4 Encoding a Wave of Attack

Given p, a probability distribution for seeing md nodes out of fd infected given
an attack degree d, we need − log p(md | fd, d) bits to optimally transmit the
value of md. That is, we encode md using an optimal prefix code—for which we
can calculate the optimal code lengths by Shannon entropy [8]. Then, once we
know both fd and md, we can use code words of resp. − log md

fd
and − log 1−md

fd
bits long to transmit whether a node in Fd got infected or not. This gives us

L(F t) = −
∑
Ft

d∈Ft

(
log (p (md | fd, d)) +md log

(
md

fd

)

+ (fd −md) log

(
1− md

fd

))
(3)

for encoding the infectees in the frontier set at time t.
Then, for the recipient to know when to stop reading, we have to transmit

how many time steps until we have reached GI . The number of iterations T
will be transmitted just like |S|, using LN. For the ripple R, starting from the
frontier-set defined by the seed nodes S, we iteratively transmit which nodes
got infected at t + 1—which in turn allows the recipient to construct F t+1.
Note that, by L(F t) we assume ripple R to be in time scale of 1/β. That is,
for low β we consider a lower time resolution than for high β. This is because
the SI model displays a natural invariance of time-scale (see Section 3.2). So
we have ripple R that gives the infections at every 1/β time-steps.

With the above, we have L(R | S) for the encoded length of a ripple R
starting at a seed set S as

L(R | S) = LN(T ) +

T∑
t

L(F t)

4.3 The Problem

With L(S) and L(R | S), we have as the total description length L(GI ,S, R)
of an infected subgraph GI of G following a valid infection propagation ripple
R starting from a set of seed nodes S by

L(GI ,S, R) = L(S) + L(R | S)

Note that as G is constant over all seed sets S and ripples R, we can
safely ignore it in the computation of the total encoded size, for its encoded
length would be constant term and hence not influence the selection of the
best model.

By which we can now formally state our problem.

Minimal Infection Description Problem Given a snapshot of a graph
G(V, E) of N nodes, of which the subgraph GI(VI , EI) of NI nodes are infected,
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and an infection probability β, by the Minimum Description Length principle
we are after that seed set S and that valid propagation ripple R for which

L(GI ,S, R)

is minimal for the Susceptible-Infected propagation strategy.

Clearly, this problem entails a large search space.We can break the problem
into two sub-problems. First of all, the identification of a set of seed nodes. It
is easy to see that the set of possible seed sets consists of all possible subsets
of VI , i.e. there are 2|VI | such sets. The second problem is to find the optimal
propagation path given a seed set. This requires minimizing L(R | S), which
comes down to finding the most likely virus propagation path given S.

In fact, Shah and Zaman [35] show that for a given infected snapshot in
an arbitrary graph the problem of just finding a single Maximum Likelihood
Estimate (MLE) seed is already quite hard, #P-Complete, equivalent to count-
ing the number of linear extensions of a poset. Further, the provable algorithm
they give works for one seed on d-regular trees only. Generalizing this approach
towards a fast solution for multiple seeds on general graphs is non-trivial. We
hence resort to heuristics.

5 Proposed Method

The outline of our approach is as follows: given a fixed number of seeds k,
we identify a high-quality k-seed set. Given these seed nodes, we optimize the
propagation ripple. With these two combined, we can use our MDL score to
identify the best k.

5.1 Best seed-set given number of seeds—‘Exoneration’

A central idea to our approach is that intuitively, un-infected nodes provide
some degree of ‘exoneration’ from ‘blame’ of a neighboring infected node being
a seed node. See Figure 2—it shows two illustrative examples of an infected
chain (a) and a chain with a star in the middle (b) (colored nodes are infected
and blue denote the true seeds). Note that while the node X is the most central
among the infected nodes and is rightly the most likely seed, the node Y is not
a likely seed because of the many un-infected nodes surrounding it. In fact, in
this case the most likely starting points would be the two Blue nodes. Hence
any method to identify the seed-sets should take into account the centrality
of the infected nodes among the infected graph, but also penalize nodes for
being too close to the un-infected frontier (the ‘exoneration’). As we explain
next, our method is able to do this in a principled manner.
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X

(a) a chain

Y

(b) a chain-star

Fig. 2. Centrality is not enough — the effect of ‘exoneration’: Example infec-
tion snapshots. Colored nodes are infected, blue nodes are the true seeds. (a)
Node X is the most central among the infected nodes; (b) Node Y is the most
central among infected nodes, but the high count of non-infected neighbors
‘exonerates’ it.

5.2 Finding best single seed—Our Main Idea

We first explain how to find the best single seed and then how to extend it to
multiple seeds. Jumping ahead, the main idea is as follows.

Main Idea The single best seed s∗ is the one with the highest score in ~u1 i.e.

s∗ = arg max
s
~u1(s)

where ~u1 is the smallest eigenvector of the laplacian submatrix LA as defined
in Table 2. Next, we give the justification.

5.3 Finding the best single seed—Justification

From Section 4, it is clear that nodes that are not in either the final frontier
set F or VI play no role, as they were not infectious nor could have been
infected. Hence, WLOG, assume G contains only the infected subgraph GI
and the frontier set F . Also, assume nodes are numbered in such a way that
the first |V −VI | nodes are the un-infected nodes and the rest are the infected
ones. If the total number of nodes in the graph is N , the number of infected
nodes is NI , then the number of un-infected nodes in G is N − NI . Further
notation is given in Table 2.

Let Xi(t) be the indicator (0/1) Random Variable denoting if node i in the
graph is infected or not at time t (1 = infected, 0 = un-infected). Let Yij(t)
be the indicator random variable denoting if node j successfully attacks i at
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time t. Consider the following update equation for any node i ∈ VI :

Xi(t+ 1) = Xi(t) + (4)

(1−Xi(t))×∨
j∈N (i)

Yij(t)(Xj(t)−Xi(t) +Xi(t))

Following the above equation, if Xi(t) = 1 then Xi(t + 1) = 1, i.e., once
a node is infected, it stays infected. Also if Xi(t) = 0, then Xi(t + 1) =∨
j∈N (i) Yij(t)Xj(t). Or in other words, an uninfected node may get infected

only if an infected neighbor successfully transmits the infection. Additionally
for any node i ∈ V −VI , we define Xi(t) = 0, as these nodes were not infected
at all during the infection process. Hence, the above equations exactly define
a discrete-time SI process but with the constraint that the nodes in the given
final frontier set always stay un-infected, thus enforcing the ‘exoneration’ dis-
cussed before. Hence we want to find the seed node which maximizes spread
in this ‘constrained’ epidemic, which we show how to next.

For any node i ∈ VI , taking expectations both sides of Equation 4, and
using that for any indicator random variable X, E[X] = Pr(X = 1), we get:

Pi(t+ 1) = Pi(t) + U − V

where,

Pi(t) = Pr(Xi(t) = 1)

U = E

 ∨
j∈N (i)

Yij(t)(Xj(t)−Xi(t) +Xi(t))


V = E

Xi(t)×
∨

j∈N (i)

Yij(t)(Xj(t)−Xi(t) +Xi(t))


Clearly, as all the terms inside are positive,

V ≥ 0, U ≥ 0 (5)

Also,

U ≤
∑

j∈N (i)

A(G)ij(Pj(t)− Pi(t) + Pi(t))

=
∑

j∈N (i)

A(G)ijPi(t) +
∑

j∈N (i)

A(G)ij(Pj(t)− Pi(t))

as an infected node j attacks any of its neighbors i independently with
probability A(G)ij (i.e. E[Yij(t)] = A(G)ij) and because by linearity of ex-
pectation, for any two events indicator random variables 1A and 1B , we have
1A ∨ 1B = 1A + 1B − 1A1B ⇒ E[1A ∨ 1B ] ≤ E[1A] +E[1B ]. Also note that:∑

j∈N (i)

A(G)ijPi(t) ≤ dmax × Pi(t)
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where dmax is the largest degree in graph G. Thus,

U ≤ dmaxPi(t) +
∑

j∈N (i)

A(G)ij(Pj(t)− Pi(t)) (6)

From Equations 5 and 6, we can conclude that, for each node i ∈ VI :

Pi(t+ 1) ≤ Pi(t) + dmaxPi(t)

+
∑

j∈N (i)

A(G)ij(Pj(t)− Pi(t))

Let σ = 1 + dmax . Recall that ∀t, Pi(t) = 0 for any eventual un-infected

node i ∈ V − VI . Let ~P (t) = [P1(t), P2(t), . . . , PN (t)]T (over all the nodes in
V). Then we can write:

~P (t+ 1) ≤ σ(I − 1

σ
M)~P (t) (7)

where, the matrix M (size N ×N) is:

M =

∣∣∣∣0N−NI ,N−NI
0N−NI ,NI

0NI ,N−NI
LA

∣∣∣∣
where we write 0N,M for an all-zeros matrix of size N ×M . Let the subvector

of ~P (t+ 1) corresponding to the infected nodes be written as ~PI(t+ 1). Then
continuing from above and using the upper bound as an approximation, we
get:

~PI(t+ 1) ≈ σ(I − 1

σ
LA)~PI(t)

= σ(I − 1

σ
LA)t ~PI(0)

= σ
∑
i

λti~ui~u
T
i
~PI(0) (8)

where, λi and ~ui are the eigenvalues and eigenvectors of the matrix I − 1
σLA.

We have the following two lemmas:

Lemma 1 The largest eigenvalue λ1 and eigenvector ~u1 of the matrix I− 1
σLA

are all positive and real.

Proof (Details omitted for brevity) The matrix I − 1
σLA is non-negative, and

imagining I − 1
σLA as an adjacency matrix, the corresponding graph is ir-

reducible, as graph GI (adjacency matrix A) is connected. We then get the
lemma due to the Perron-Frobenius theorem [23]. For the formal proof, see
the Appendix. ut

Lemma 2 The largest eigenvalue of matrix I − 1
σLA and the smallest eigen-

value of LA are related as λ1(I − 1
σLA) = 1− 1

σλN (LA).
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Proof (Details omitted for brevity) It is easy to see that any eigenvalue eig(I−
1
σLA) = 1 − eig( 1

σLA). As the matrices are symmetric, all the eigenvalues
involved are real. By the Cauchy eigenvalue interlacing theorem [37] applied
to L(G), all the eigenvalues of any co-factor CLG of L(G) are positive. By
the famous Kirchhoff’s matrix theorem [9], the determinant of any co-factor
CLG is also non-zero as it counts the number of spanning trees of G. Also,
it is well-known that the determinant of any matrix is just the product of its
eigenvalues [37]. Hence, all eigenvalues of any co-factor matrix CLG of L(G)
are strictly positive. We can similarly apply eigenvalue interlacing successively
to a suitable CLG and so on till we get to LA (a principal submatrix of L(G)),
and get that all eigenvalues of LA are strictly positive. The lemma follows
then. For the formal proof, see the Appendix. ut

Hence, the eigenvector ~u1 is also the eigenvector corresponding to the small-
est eigenvalue of LA.

Now, from Equation 8 and Lemma 1, we have:

~PI(t+ 1) = σλt1
∑
i

λti
λt1
~ui~u

T
i
~PI(0)

≈ σλt1~u1~u
T
1
~PI(0)

assuming a substantial eigen-gap or ‘big-enough’ t. Now assuming that ~PI(0)
is all zero except for a single seed s for which it is 1, we can conclude that
ultimately in our ‘constrained’ epidemic,

∀i ∈ VI , P r(Xi = 1|s) ∝∼ ~u1(i)~u1(s) (9)

∀i ∈ V − VI , P r(Xi = 1|s) = 0 (10)

Clearly the most likely single seed s∗ would be:

s∗ = arg max
s

[∑
i∈VI

Pr(Xi = 1|s) +
∑

i∈V−VI

(1− Pr(Xi = 1|s))

]

Using Equations 9 and 10,

s∗ ≈ arg max
s
~u1(s)

∑
i∈VI

~u1(i)

= arg max
s
~u1(s) (11)

Hence, for a single seed, we just need to find the node with the largest score in
~u1 (which is also the smallest eigenvector of the laplacian submatrix LA from
Lemma 2).
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5.4 Finding best k-seed set

Note that simply taking the top-k in the above eigenvector will not give good
k-seed-sets due to lack of diversity. This is because the error in the upper-
bound approximation used in Equation 8 will become larger due to increase
in the norm of ~PI(0). Hence, we treat the newly chosen seed, say s∗, as un-
infected, effectively exonerating its neighbors and boosting diversity. We redo
our computation on the resulting smaller infected graph, but a potentially
larger frontier set—hence, we take the next best seed given the s∗ that has
already been chosen. So for any given k, we successively find the best next
seed, given the previous choices, by removing the previously chosen seeds from
the infected set and solving Equation 11. For example, in Figure 1, the top
suspect (Red on the right) will have a lot of suspicious neighbors as well. Thus,
using our exoneration technique, the algorithm will be forced away from them
towards the remaining Red seed.

5.5 Finding a good ripple

As discussed before, once we find the best seed-set Sk for a given k, we optimize
the propagation ripple of Sk to GI to minimize the total encoded size. Recall
from Section 4 that this involves minimizing L(R | S), which consists of two
terms. First, we have the cost of encoding the length of the ripple, the number
of time-steps. While LN does grow for higher values of T , in practice this term
will be dwarfed by the actual encoding of the subsequent frontier sets. As such,
minimizing L(R | S) essentially comes down to minimizing

∑T
t L(F t), or, in

other words, maximizing the likelihood of the ripple R. Further recall that the
SI model has a natural scaling invariance, 1/β. As our score takes this into
account, the ripple with the smallest description length should too.

Hence, we design the following procedure. For each attack-degree set Fd,
at any iteration we scale the number of attacks by 1/β i.e. a set of size fd is
equivalent to a set of size fd/β. Then, to get the overall Maximum Likelihood
Estimate (MLE) ripple, we adopt the following greedy heuristic. We assume
that the overall MLE ripple always performs a locally optimal next step. Hence
this boils down to choosing the most-likely nodes to get infected at any given
step, for a given frontier set F .

It is well-known that a Binomial distribution B(n, p) has its mode at b(n+
1)pc. Using this fact, at any iteration t, taking into account the scaling, we can
see that the most likely number of nodes infected in an attack-degree set Fd
would be nd = b(fd/β + 1) × pdc—where pd as defined before in Section 4 is
the attack probability in the set Fd. As such, we can simply uniformly choose
this number of nodes from the Fd, as each node in Fd is equally likely to be
infected. We do this for every non-empty attack-degree set, for every iteration,
until we have infected exactly the observed snapshot. This way, we obtain an
approximation of the most likely propagation ripple for a given seed-set Sk
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Algorithm 1 NetSleuth

Input: G(V, E) ≡ G∗I ∪ F
∗, G∗I (VI , EI) (the infected graph) and F∗ (the frontier set).

Output: S = the set of seeds (culprits).
1: L(G) = D(G)−A(G), the Laplacian matrix corresponding to graph G.
2: S = {}
3: GI = G∗I
4: while L(GI ,S, R) decreases do
5: LA = the submatrix of L(G) corresponding to GI .
6: v = eigenvector of LA corresponding to the smallest eigenvalue.
7: next = arg maxi v(i)
8: S = S ∪ {next}
9: R = ripple maximizing likelihood of GI from S

10: GI = GI\{next} (Graph GI with node next removed)
11: end while
12: return S

and can subsequently score the quality of the seed set and ripple using our
MDL score.

Another possible way of getting a high quality ripple is through Markov
Chain Monte Carlo simulations. This essentially entails that we perform mul-
tiple full epidemic simulations from the given seed-set to reach the infected
set. Each such simulation can give us a ripple which we can score using our
MDL formulation. Hence this method is very expensive (though arguably more
accurate as we compare multiple ripples), and we do not use it.

5.6 The NetSleuth Algorithm

A naive approach would be to consider all possible k, and select that Sk that
minimizes L(GI ,Sk, R). Clearly, this raises computational issues. Assuming
convexity of the score over k, we stop the search as soon as increasing k
increases the MDL score. Though it is hard to prove the convexity of the
MDL score, we will see in the experimental evaluation it is a valid strategy.
Algorithm 1 gives the pseudo-code and Lemma 3 shows the running time for
our algorithm NetSleuth.

Lemma 3 (Running Time of NetSleuth) The time complexity of Net-
Sleuth is O(k∗(EI + EF + VI)).

Proof (Details omitted for brevity) The main thing to note is that running time
depends on the true number of seeds k∗, as we repeat steps for every value of k
from 1 to k∗. For any one iteration, the running time isO(EI+TRIPPLE+TMDL),
where we compute the smallest eigenvector of LA using the Lanczos method,
which is approximately O(E) (# edges) for sparse graphs. TRIPPLE and TMDL

are the running time to compute the best ripple and the MDL score given
seeds. These tasks are intuitively linear on the number of edges and nodes in
the frontier and infected sets, as we need to traverse each of the infected and
frontier sets only once each for each task. Hence we get the given overall linear
complexity. For the formal proof, please see the Appendix. ut
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Hence NetSleuth is linear in the number of edges and vertices of the
infected sub-graph and the frontier set, which makes our method scalable for
large graphs (as compared to the methods in [35; 18] which, even for detecting
a single seed, are O(N2)).

6 Experiments

Here we experimentally evaluate NetSleuth, in particular its effectiveness in
finding culprits—whether it correctly identifies (a) how many as well as (b)
which ones—and (c) its scalability.

6.1 Experimental Setup

We implemented NetSleuth in Matlab, and in addition implemented the SI
model as a discrete event simulation in C++. All reported results are averaged
over 10 independent runs (so we generate 10 graphs for each seed set).

In our study we use both synthetic and real networks—we chose synthetic
networks exemplifying different types of situations. We consider the following
networks:

1. GRID is a 60×60 2D grid as shown in Figure 1.
2. CHAIN-STAR It is a graph of total 107 nodes. The first 7 nodes form a

linear chain and the middle node has 100 additional neighbors.
3. AS-OREGON The Oregon AS router graph which is a network graph col-

lected from the Oregon router views. It contains 15 420 links among 3 995
AS peers.2

For the experiments on AS-OREGON, we ran the experiments for true-
seed count k∗ = 1, 2, 3, 5. So for each seed-set, we run a simulation till at
least 30% of the graph is infected, and give the resulting footprint as input to
NetSleuth. Note that, the larger the number of infections, the tougher it is
to find the true seeds, as in the SI model any seed will eventually infect the
whole graph with certainty. Finally, we make sure that the infected sub-graph
was connected—otherwise, we just have separate problem instances.

As discussed in the introduction and Section 2, the existing proposals for
identifying culprits consider significantly different problems settings than we
do (see Table 1); the Rumor Centrality of Shah and Zaman [34, 35] can only
discover one seed node, while Effectors of Lappas et al [18] even consider a
completely different infection model. As such we can not meaningfully compare
performances and hence here only consider NetSleuth.

2 For more information see http://topology.eecs.umich.edu/data.html.
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6.2 Evaluation—a subtle issue

How to evaluate the goodness of a seed set? That is, in Figure 1, how close are
the red seeds (recovered) from the blue seeds (true)? Notice that the recov-
ered seeds may actually have better score than the actual ones, for the same
reason that the sample mean of a group of 1D Gaussian instances gives lower
sum-squared-distances than the theoretical mean of the distribution. More-
over, even for evaluation, it is intractable to compute the exact probability of
observing the footprint from a given seed-set.

Thus we propose two quality measures. The first, QMDL, is based on our
MDL formulation: we report the ratio of the MDL score of our seeds, vs. the
MDL score of the actual seeds i.e.

QMDL =
L(GI ,S, R)

L(GI ,S∗, R∗)
(12)

Clearly, the closer to 1, the better.
The second QJD intuitively measures the overlap of the footprint produced

by a seed-set S and the input footprint GI(VI , EI). Clearly, the candidate seed-
set S can produce n footprints, when we run n simulations; so we compute
E[JDS(VI)], the average Jaccard distance3 of all these n footprints, w.r.t. the
true input footprint VI . As with QMDL, we normalize it with the corresponding
score E[JDS∗(VI)] for the true seed-set, and thus report the ratio,

QJD =
E[JDS(VI)]
E[JDS∗(VI)]

(13)

Again, the closer to 1, the better.

6.3 Effectiveness of NetSleuth in identifying How Many

In short, NetSleuth was able to find the exact number of seeds for all the
cases. Figures 3 show the MDL score as a function of k = 1, 2, . . . , 9 seeds
found by NetSleuth before stopping, for true seed-sets with (a) k∗ = 1, (b)
k∗ = 2, (c) k∗ = 3 and (d) k∗ = 5 respectively on the AS-OREGON network.
Note that the plots show near-convexity, with the minimum at the true k∗,
justifying our choice of stopping after j = 6 iterations of increasing scores. It
also shows the power of our approach, as we can easily recover the true number
of seeds using a principled approach.

6.4 Effectiveness of NetSleuth in identifying Which Ones

In short, in addition to finding the correct number of seeds, NetSleuth is able
to identify good-quality seeds with high accuracy. For our synthetic graphs,

3 We use the standard definition of Jaccard Distance between two sets A and B = 1 −
|A∩B|
|A∪B| .
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(a) k∗ = 1 (b) k∗ = 2

(c) k∗ = 3 (d) k∗ = 5

Fig. 3. MDL finds the correct k: MDL scores of seeds by NetSleuth when
(a) k∗ = 1, (b) k∗ = 2, (c) k∗ = 3 and (d) k∗ = 5 on the AS-OREGON
network. Each point average of 10 runs. Note the near-convexity of the score,
with the minimum at exactly k∗, enabling us to stop correctly.

NetSleuth is able to point out that there must have been exactly 2 seeds for
both the GRID and CHAIN-STAR examples—respectively identified as the
Red circles in Figure 1, and the Blue nodes in Figure 2(b)), agreeing with the
ground-truth and intuition.

Figures 4 show the results of our experiments for different number k∗ =
1, 2, 3, 5 of true seeds on the AS-OREGON graph. We randomly selected 90
seed-sets of each size. We made sure that the seed-sets contained both well-
connected and weakly connected nodes. Each point is an average of 10 runs.

Firstly, although not shown in the figures, NetSleuth was able to per-
fectly recover the true number of seeds in almost all cases. For each seed-set,
we calculate JDS(VI) for the seeds returned by NetSleuth and the true
seeds and give the scatter plot in Figures 4 for true-seed count k∗ = 1, 2, 3, 5
respectively. Hence points on or below the 45-degree line (solid blue) are bet-
ter. Clearly, almost all points are concentrated near the diagonal, showing high
quality. In fact, many points are exactly on the line, meaning we are able to
recover the true seeds perfectly for many cases. We do not show similar plots
with our MDL score due to lack of space.

Next, we calculate QMDL and QJD averaged over all the different seed-sets
(of the same size for k∗ = 1, 2, 3, 5). Results are shown in the bar plots of
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(a) k∗ = 1 (b) k∗ = 2

(c) k∗ = 3 (d) k∗ = 5

Fig. 4. Scatter Plot of the Jaccard scores of seeds returned by NetSleuth
(y-axis) and the corresponding true seeds (x-axis) for (a) k∗ = 1, (b) k∗ = 2,
(c) k∗ = 3 and (d) k∗ = 5. On or below the 45-degree line is better. Each
point is an average over 10 runs. For all cases, the correct number of seeds
was automatically determined. Note that for many runs the seeds identified
by NetSleuth score exactly or even better than the true seeds.

Figure 5. The true-seed scores are represented by the dotted line at 1, for
both QMDL and QJD. Clearly, all of bars are close to 1, demonstrating that
NetSleuth consistently finds very good culprits. Moreover, both QMDL and
QJD quality metrics are similar in magnitude for all k∗’s — increasing our
confidence in our results.

6.5 Scalability

Figure 6 demonstrates the scalability of NetSleuth after running it on in-
creasingly larger infected snapshots of AS-OREGON (as the complexity just
depends on the size of the snapshot), for (a) k∗ = 1 and (b) k∗ = 2 respectively.
As expected from our Lemma 3, the running-time is linear on the number of
edges of the infected graph, for both values of k∗.
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(a) k∗ = 1 (b) k∗ = 2

(c) k∗ = 3 (d) k∗ = 5

Fig. 5. Average QMDL and QJD scores for the seeds returned by NetSleuth
for (a) k∗ = 1, (b) k∗ = 2, (c) k∗ = 3 and (d) k∗ = 5. Each bar represents
the average over 90 different seed-sets. Note that all the bars are close to
1, indicating that we consistently find high-quality seed sets both with the
Jaccard measure, and with the MDL measure.

7 Discussion

The experiments clearly show NetSleuth reliably correctly detects the cor-
rect number of seeds of an epidemic, as well as identifies their location in the
graph with high precision. Moreover, with synthetic data, such as depicted in
Fig. 1 and Fig. 2, we show its estimates agree with human intuition—while
experiments on real data show we can handle realistic network distributions.
As real graphs are very large, scalability is of utmost importance, and we val-
idated that NetSleuth scales linearly in the size of the infected footprint of
the graph. As such, NetSleuth constitutes an answer to the question: who
are the culprits?

We employ the MDL principle to identify the best seed set. As we have
seen in the experiments, the encoding we propose works very well in practice.
It is important to note, however, that MDL is not a magic wand. Any encoding
involves choices, and so does ours. One important choice we here make is to
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Fig. 6. NetSleuth Scalability: Wall-clock running time (in seconds) for in-
creasingly larger infected snapshots of AS-OREGON (as the complexity just
depends on the size of the snapshot) for (a) k∗ = 1 and (b) k∗ = 2. Each point
average of 10 runs. Note that, as expected, the running time scales linearly,
for both values of k∗.

describe data using a single ripple. While this offers very high efficiency, and
good results, by considering only a single path from the seeds to the footprint,
we may end up in a local minimum.

The obvious alternative is to calculate the probability of reaching the foot-
print over all possible paths. For general graphs, calculating this probability
is not trivial, however. Though arbitrarily good estimates can be obtained us-
ing MCMC sampling, this has very high computational cost and would harm
scalability of the method. From a robustness point of view, however, it is in-
teresting to investigate whether it is possible to define efficient encodings that
consider more than a single path. One appealing approach from modern MDL
theory would be to employ sequential Normalized Maximum Likelihood [31]
to this end. Further, alternate model selection techniques, such as BIC [33]
could be applicable.

NetSleuth is the first approach to automatically identify both the num-
ber and the location of the seed nodes. As lunch is never free, the current
proposal has a number of limitations that make for engaging future research.

First of all, NetSleuth is defined for unweighted and undirected graphs.
Both our current MDL score and ripple MLE are applicable to directed graphs
without adjustment; for weighted graphs, however, calculating the infection
probabilities becomes more involved. An overarching challenge is to extend our
submatrix-Laplacian based seed set search to directed and weighted graphs.

Based on the notion of exoneration, NetSleuth relies on un-infected
nodes in the graph to be true negatives; if they are (unknowingly) infected,
but reported as un-infected, search for good seeds may erroneously be pushed
away from the true seed. Extending our method to allow for noise in the input
graph GI will allow for more robust identification of seed nodes.
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Here, we consider the SI model, which is both often used and relatively
simple epidemic model. There exist many more realistic models, such as the
Susceptible-Infected-Recovered (SIR) model, where infected nodes can recover
and stop infecting neighbors. While it would add to the applicability of our
approach, it is not immediately apparent how to generalize our encodings and
submatrix-Laplacian method to models such as SIR and SIRS.

The SI model has one important parameter, β, which identifies the potency
of the virus, as well as its natural time scale. In this paper we assume β to be
known, as it is a parameter normally estimated by epidemiologists. As long as
all considered values are assumed equi-probable, our current MDL score, can,
however, be employed to identify that value of β that minimizes the description
length. The key issue is efficient search, as simply running NetSleuth for all
possible values of β raises computational issues.

8 Conclusions

In this paper we discussed finding culprits, the challenging problem of iden-
tifying the nodes from which an infection in a graph started to spread. We
proposed to employ the Minimum Description Length principle for identifying
that set of seed nodes from which the given snapshot can be described most
succinctly. We introduced NetSleuth (based on a novel ‘submatrix-laplacian’
method), a highly efficient algorithm for both identifying the set of seed nodes
that best describes the given situation, and automatically selecting the best
number of seed nodes—in contrast to the state of the art.

Experiments showed NetSleuth attains high accuracy in detecting the
seed nodes, as well as correctly identifying their number. Importantly, Net-
Sleuth scales linearly with the number of edges of the infected graph, O(EF +
EI + VI), making it applicable on large graphs.

Future work includes extending NetSleuth to directed and weighted
graphs, which entails formalizing an appropriate MDL score, and finding good
and efficient path optimization strategies—while for the former this should be
fairly straightforward, the latter is not quite trivial. Another promising line of
research is to extend NetSleuth to the popular SIR epidemic model.

APPENDIX

Proofs

We formally prove various Lemmas used in the paper in this section.

Proof (of Lemma 1) The graph GI is connected (as we assume the set of in-
fected nodes are connected, otherwise we are just dealing with separate prob-
lems, one for each connected component). Now the laplacian matrix L(G) has
all entries except the diagonal elements as non-positive and all the diagonal
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elements as positive. In addition L(G) is a symmetric matrix (as A(G) is sym-
metric). The matrix LA is a principal submatrix (i.e. it has been formed by
removing matching rows and columns) of size NI × NI of L(G). As a result,
LA is symmetric.

Consider matrix M = (I− LA

σ ). Clearly it is symmetric (due to the above).
Consider some diagonal element Mii (for some index i):

Mii = 1− di
σ

= 1− di
1 + dmax

(14)

> 0 (15)

Any off-diagonal element Mij is:

Mij =

{
0, if {i, j} /∈ EI

1
1+dmax

, if {i, j} ∈ EI

Hence, firstly M is a non-negative matrix. Further the structure of the
matrix M = (I − LA

σ ) represents the adjacency matrix of a weighted con-
nected graph GM (with self loops). This is because its off-diagonal elements
are non-zero only when the corresponding edge is present in GI . Hence as GI is
connected, so is GM . Now as GM is connected, we have that M is irreducible.

Finally applying the well-known Perron-Frobenius theorem [23] on the non-
negative irreducible matrix M = (I − LA

σ ), we get that the first (largest)
eigenvalue λ1 and the corresponding eigenvector ~u1 are all positive and real.

ut

Proof (of Lemma 2) Firstly note that both matrices M = (I − LA

σ ) and LA
are symmetric (see proof of Lemma 1 above). Hence it follows that all their
eigenvalues are real [37].

Now consider matrix the laplacian matrix L(G) of graphG. It is well-known
that its smallest eigenvalue is 0 [9]. Hence all its eigenvalues are non-negative.
Let its eigenvalues be

0 ≤ µ2 ≤ µ3 ≤ . . . ≤ µN
Consider any co-factor matrix CLG of L(G). Recall that a co-factor matrix

is a principal sub-matrix resulting after the removal of one matching row and
column. Clearly CLG is also symmetric and has all real eigenvalues. Let them
be:

ν1 ≤ ν2 ≤ ν3 . . . ≤ νN−1
We can now apply the Cauchy eigenvalue interlacing theorem [37] to L(G)

and CLG. Applying it we get that:

0 ≤ ν1 ≤ µ2 ≤ ν2 . . . ≤ νN−1 ≤ µN
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Hence all the eigenvalues of CLG are non-negative.
Now, recall that according to the famous Kirchoff matrix tree theorem [9],

the determinant of any co-factor of the laplacian matrix L(G) of graph G is
equal to the number of spanning trees of G. As the number can not be zero,
the determinant of CLG is also non-zero i.e.

det(CLG) > 0

Further it is well known that the determinant of any matrix is equal to the
product of its eigenvalues [37]. So:

det(CLG) = ΠN−1
i=1 νi > 0⇒ ∀i νi > 0 (16)

i.e. none of the eigenvalues of CLG are zero.
Recall that LA is a principal sub-matrix of L(G)—hence it is a co-factor

of some other larger principal submatrix, which is a co-factor of some other
still larger principal submatrix and so on till we reach CLG. Hence there is
a sequence of submatrices which can lead us from CLG to LA, in which each
submatrix is a co-factor of the one before it. Hence, applying Equation 16
above succesively to this sequence, we get that all the eigenvalues of LA are
strictly positve (non-zero).

Finally, note that any eigenvalue of (I− LA

σ ), eig((I− LA

σ )) = 1−eig(LA

σ ).
Hence as all the eigenvalues of LA are non-zero, we get

λ1(1− LA
σ

) = 1− λNI
(LA)

σ

where λNI
(LA) is the smallest eigevalue of LA. ut

Proof (of Lemma 3) We keep finding Sk for each seed-set size until MDL tells
us to stop. Hence the running time is O(k∗(EI +TRIPPLE +TMDL)), if k∗ is the
optimal seed-set size and TMDL is the running time of computing the MDL
score given the seed set size is k∗. Here we used the fact that calculating the
eigenvector using the Lanczos method is approximately O(E) (# edges) for
sparse graphs.

The worst-case complexity TMDL of calculating L(GI ,S, R) for a given GI ,
S, and R, is O(EI + EF + VI). The L(S) term is O(1). For the L(R | S) term,
we need to iterate over the ripple, which is at most VI steps long. We only
have to update the frontier set F when one or more nodes got infected, for
which we then have to update the attack degrees of the nodes connected to
the nodes infected at time t. Hence we traverse every edge in EI + EF , and
every node in VI , which gives it the complexity of O(EI + EF + VI).

Finally, the running time TRIPPLE of computation of the MLE ripple for a
given Sk is also O(EI + EF + VI).

So the overall complexity of NetSleuth is O(k∗(EI + EF + VI)). ut
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