
Making
Pattern
Mining
Useful

Jilles Vreeken

The research reported in this thesis was supported by the Netherlands Organ-
isation for Scientific Research (NWO grant no. 635.100.015).

SIKS Dissertation Series No. 2009-45
The research reported in this thesis has been carried out under the auspices of
SIKS, the Dutch Research School for Information and Knowledge Systems.

c© Jilles Vreeken, 2009

ISBN 978-90-393-5236-6
URL: http://igitur-archive.library.uu.nl

Making Pattern Mining Useful

Het bruikbaar maken van patroon mining
(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag
van de rector magnificus, prof.dr. J.C. Stoof, ingevolge het besluit van het

college voor promoties in het openbaar te verdedigen op dinsdag 15 december
2009 des middags te 12.45 uur

door

Jilles Vreeken
geboren op 21 maart 1981 te Amsterdam

Promotor: Prof.dr. A.P.J.M. Siebes

Dit proefschrift werd (mede) mogelijk gemaakt met financiële steun van de
Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO).

Contents

Contents i

1 Introduction 1

2 Krimp: Mining Itemsets that Compress 7
2.1 Introduction . 8
2.2 Theory . 11
2.3 Algorithms . 18
2.4 Interlude . 25
2.5 Classification by Compression 26
2.6 Related Work . 29
2.7 Experiments . 31
2.8 Discussion . 49
2.9 Conclusions . 50

3 Characterising the Difference 53
3.1 Introduction . 54
3.2 Preliminaries . 55
3.3 Database Dissimilarity . 56
3.4 Characterising Differences . 65
3.5 Related Work . 69
3.6 Conclusions . 71

4 Identifying the Components 73
4.1 Introduction . 74
4.2 Problem Statement . 75
4.3 Model-Driven Component Identification 77
4.4 Data-Driven Component Identification 83
4.5 Discussion . 86
4.6 Related Work . 87
4.7 Conclusion . 88

i

5 Data Generation for Privacy Preservation 89
5.1 Introduction . 90
5.2 The Problem . 91
5.3 Preliminaries . 93
5.4 Krimp Categorical Data Generator 94
5.5 Experiments . 97
5.6 Discussion . 105
5.7 Conclusions . 106

6 Krimp Minimisation for Missing Data Estimation 107
6.1 Introduction . 108
6.2 The Problem . 109
6.3 Completion Algorithms . 113
6.4 Related Work . 116
6.5 Experiments . 117
6.6 Discussion . 122
6.7 Conclusions . 123

7 Low-Entropy Set Selection 125
7.1 Introduction . 126
7.2 Problem Definition . 130
7.3 Algorithms . 135
7.4 Experiments . 140
7.5 Related Work . 146
7.6 Discussion . 147
7.7 Conclusions . 148

8 Finding Good Itemsets by Packing Data 149
8.1 Introduction . 150
8.2 Preliminaries . 151
8.3 Packing Binary Data with Decision Trees 152
8.4 Itemsets and Decision Trees . 157
8.5 Choosing Good Itemsets . 159
8.6 Related Work . 161
8.7 Experiments . 163
8.8 Discussion . 167
8.9 Conclusions . 168

9 Conclusions 169

Bibliography 173

Index 183

ii

CONTENTS

Samenvatting 185

Dankwoord 187

Curriculum Vitae 189

SIKS Dissertation Series 191

iii

CHAPTER 1

Introduction

The discovery of patterns plays an important role in data mining. Data mining
is the field of research concerned with the extraction of useful insights from
large and detailed collections of data. The process of finding patterns in data
is called pattern mining. A pattern can be any type of regularity displayed in
that data, such as, e.g. which items are typically sold together, which genes
are mostly active for patients of a certain disease, what type of customer is
most likely to provide profit, etc, etc. Clearly, such patterns can provide useful
insight.

Generally speaking, finding a pattern is easy. Discovering interesting pat-
terns, that’s where things get complicated. This thesis is about finding inter-
esting patterns, and, more boldly, about making pattern mining useful. It is
about how to discover few, but highly interesting patterns. And, prominently,
it is about how to put these patterns to good use, solving a number of data
mining problems.

But, before we discuss the actual content of the thesis, let us first informally
discuss pattern mining and identify why it is not yet as useful as it could be.

Pattern mining

In order to find patterns, we need two ingredients, besides the data. First,
we need to construct a notion of the kind of information we would like to
extract, i.e. what should the pattern look like. Such a notion is called a
pattern language. The second required ingredient is a computer program that
will venture into the data and return the patterns. We call this the pattern
miner. In general, constructing a naïve miner is easy. Building a fast miner
can be a totally different story. As always, the devil is in the details.

1

1. Introduction

Let us consider an example how pattern mining could be used, e.g. in
medicine, for gaining insight in the causes of a particular disease. Normally,
following the scientific method, a doctor would build a hypothesis, that is,
an idea of what the cause could be. In other words, a pattern. For this
hypothesis not to be a shot in the dark, the doctor needs to be able to oversee
the symptoms, behaviours, etc, that the patients exhibit. That is, he or she
must be able to ‘see’ the pattern. The hypothesis can then be tested, and so
shown to be correct or not.

This works very well, up till the point where problems become too compli-
cated, when it becomes impossible to gain sufficient overview. Good examples
of such cases are so-called complex hereditary diseases. These are diseases in
which the cause lies in the interplay between multiple genes, and any number
of lifestyle and environmental factors. A prime example of such a disease is
celiac disease [22], better known by the fact that it often leads to gluten intol-
erance. This gluten intolerance is the main environmental factor. Further, two
genes are known to influence the disease, but together explain only 20% of the
variation: there are more factors. An additional complication is that in some
cases there are many variables (e.g. the number of genes), but relatively little
data: regularities that seem sound may be spurious, and vice versa.

Simply put, in cases like these there exists such a gigantic number of pos-
sible combinations of causes, that it is impossible for a human to gain enough
overview to determine the factors that matter.

We can, however, apply pattern mining. We simply mine the patterns in
the gathered data, and return those that pass certain criteria. In this case, such
a pattern could be a combination of factors that have a strong relation with
the disease. The doctor then selects the most promising patterns, e.g. those
in accordance with present knowledge or those that contradict it, and builds a
hypothesis from it.

So far, so good. However, in practice, the poor doctor will now be swamped
in patterns. From being unable to overview the data, the problem now has
become that it is impossible to overview the potentially interesting patterns.

Since the conception of pattern mining, one of the key goals has been com-
pleteness in discovery: the task is to find all patterns that satisfy certain con-
ditions. In a way, this goal is very useful: for every returned pattern we know
that it fulfils all conditions that we have set, e.g. it occurs frequently enough
not to be considered ‘noise’.

The drawback is that the number of patterns returned is typically pro-
hibitively large. Generally, there are lots of patterns satisfying the conditions,
and many patterns convey roughly the same information about the data: they
are variations of the same theme.

Many proposals to reduce this redundancy exist. However, although stark
reductions are attained by the proposed techniques, up to orders of magnitude,

2

the resulting numbers are still generally by far too large to be manhandable
and considered by our expert, the doctor.

Making pattern mining useful
So, while pattern mining holds great promise, I dare say it collapses under its
own weight: it finds patterns too easily. This is in particular so because the use
of an interestingness measure, i.e. criteria to cherry pick individual patterns
that should be interesting, proves to be very hard in practice: if we set such
constraints tight, only few but commonly known patterns are returned, and
when these criteria are set looser we are overwhelmed by the number of results.

While patterns can clearly provide useful insight, finding just those inter-
esting patterns is a question not yet answered by pattern mining. The sheer
amount of results makes it virtually impossible for the patterns to be inter-
preted by human experts such as our doctor. Further, it prohibits pattern
mining, and the detail provided by the discovered patterns, to be practically
applied more generally in data mining.

What this pattern explosion comes down to, is that we are asking the wrong
question. While we ask for all patterns that satisfy the conditions, at the same
time we actually only want to have a small set of the best patterns.

This thesis therefore proposes a different approach. We do not want to find
all patterns in a database, or trying to summarise those collections of patterns.
Instead, we want small, non-redundant, sets of high-quality patterns that sum-
marise the data well, i.e. patterns that describe the data. The resulting groups
should be small enough to be analysed by an expert such as our doctor and
provide a detailed overview of the data.

In this thesis the problem of mining sets of patterns is approached through
the Minimum Description Length principle, that is, by lossless compression.
Intuitively, we can say that the better a set of patterns compress the data, the
better it captures the regularities in the data. With MDL we define the best
set of patterns as that set of patterns that compresses the data best.

One could ask, why would our doctor be interested in patterns that com-
press? Quite simply, because these are the patterns that matter. Because
MDL takes the complexity of the selected patterns into account, we know that
redundant patterns will be been eliminated, as well as those that model spuri-
ous information: such patterns only contribute to the complexity of the model,
and therefore they will not be part of the set of patterns that compress best.
In other words, the doctor will find that the best compressing set of patterns
describes the data very well: without redundancy and noise.

Further, the resulting sets of patterns are small in size, thereby solving the
problem of the pattern explosion. Second, by selection on describing data well,
these sets contain detailed information on the most important patterns in the
data. These two aspects make these sets of patterns useful, i.e. they cannot

3

1. Introduction

only be presented for evaluation by an expert such as our doctor, but also
naturally be applied to solve various data mining problems.

This thesis includes five such applications, including measuring and charac-
terising differences between databases, finding blocks of data with similar char-
acteristics, and estimating the missing values for data with incomplete records;
all problems often faced by our doctor. These are all naturally approached
through the MDL-principle. However, it is the level of detail captured in the
pattern sets that makes the difference, allowing for both high performance and
characterisation of the why.

As such, the research objective of this thesis is phrased by the title of this
thesis and this subsection:

Making pattern mining useful

This goal includes to develop techniques for finding small groups of high-quality
patterns, such that they can be presented to an expert, and showing how these
pattern sets provide insight in the data and can be used to solve open data
mining problems.

Outline of this thesis
This thesis is divided into nine chapters. Chapters 2 to 8 are edited versions of
earlier published work. The references to the original publications are found on
the first pages of those chapters. The topics treated in the following chapters
are summarised as follows:

• In Chapter 2 we propose to use the Minimum Description Length principle
to select small groups of frequent itemsets that describe the data well.
To this end, we introduce Krimp; a heuristic algorithm for finding the
optimal set of frequent itemsets. Through extensive evaluation, amongst
which through the Krimp-classifier, we show the high quality of these code
tables.

• In Chapter 3 we show how one can measure and characterise the differ-
ence between transaction databases. Difference is measured by calculating
the relative Krimp-compressibility of the datasets. The code tables allow
detailed insight in why data is deemed similar or not.

• In Chapter 4 we give two MDL-based algorithms through which one can
identify and characterise the components of a database. Data is split into
homogeneous blocks, such that the compression is optimised. The methods
are orthogonal in approach: one is data-driven, while the second extracts
the components from a Krimp model.

4

• In Chapter 5 we show how code tables, while mined as descriptive models,
can be used as generative models. We introduce an algorithm that gen-
erates data that is virtually indistinguishable from the original. We show
the use for this in privacy-preserving data mining, as our method provides
anonymised data with all important patterns intact.

• In Chapter 6 we further onto the generative path, and introduce three
algorithms for completion of data with missing values. All three follow the
MDL principle, i.e. the completed database that can be compressed best,
is the best completion. The methods attain high imputation accuracy and
maintain all count statistics of the data.

• In Chapter 7 we present LESS, an algorithm to select patterns for describ-
ing data 0/1 symmetrically; not just items that are present. As patterns,
it uses low-entropy sets [59], itemsets that identify strong interactions be-
tween attributes. It follows the MDL principle and selects groups of these
patterns such that the data is described succinct.

• In Chapter 8 we introduce Pack, an algorithm for selecting good itemsets
through refined MDL. It uses decision trees to compress data 0/1 sym-
metrically and attains high compression ratios. Besides selecting itemsets
from a larger collection, we can also mine models directly from data.

Chapter 9 draws conclusions and summarises the main contributions of this
thesis.

5

CHAPTER 2

Krimp: Mining Itemsets that
Compress

One of the major problems in pattern mining is the explosion of the number
of results. Tight constraints reveal only common knowledge, while loosening
these leads to an explosion in the number of returned patterns. This is caused
by large groups of patterns essentially describing the same set of transactions.
In this chapter we approach this problem using the MDL principle: the best
set of patterns is that set that compresses the database best. For this task we
introduce the Krimp algorithm. Experimental evaluation shows that typically
only hundreds of itemsets are returned; a dramatic reduction, up to 7 orders
of magnitude, in the number of frequent item sets. These selections, called
code tables, are of high quality. This is shown with compression ratios, swap-
randomisation, and the accuracies of the code table-based Krimp classifier, all
obtained on a wide range of datasets. Further, we extensively evaluate the
heuristic choices made in the design of the algorithm.1

1 This work has been accepted for publication as [123]:
J. Vreeken, M. van Leeuwen, and A. Siebes. Krimp: Mining itemsets that compress. Data
Mining and Knowledge Discovery, Springer.
It is based on work originally published as [113] and [78]:
A. Siebes, J. Vreeken, and M. van Leeuwen (2006). Item sets that compress. In Proceedings
of the SDM’06, pages 393-404.
M. van Leeuwen, J. Vreeken, and A. Siebes (2006). Compression picks the item sets that
matter. In Proceedings of the ECML PKDD’06, pages 585-592.

7

2. Krimp: Mining Itemsets that Compress

2.1 Introduction

Patterns

Without a doubt, pattern mining is one of the most important concepts in data
mining. In contrast to models, patterns describe only part of the data, see,
e.g., [57,97]. In this chapter, we consider one class of pattern mining problems,
viz., theory mining [90]. In this case, the patterns describe interesting subsets
of the database.

Formally, this task has been described by [89] as follows. Given a database
D, a language L defining subsets of the data and a selection predicate q that
determines whether an element φ ∈ L describes an interesting subset of D or
not, the task is to find

T (L,D, q) = { φ ∈ L | q(D, φ) is true }.

That is, the task is to find all interesting subgroups.
The best known instance of theory mining is frequent set mining [5]; this is

the problem we will consider throughout this chapter. The standard example
for this is the analysis of shopping baskets in a supermarket. Let I be the set
of items the store sells. The database D consists of a set of transactions in
which each transaction t is a subset of I. The pattern language L consists of
itemsets, i.e. again sets of items. The support of an itemset X in D is defined
as the number of transactions that contain X, i.e.

suppD(X) = |{t ∈ D | X ⊆ t}|.

The ‘interestingness’ predicate is a threshold on the support of the itemsets,
the minimal support: minsup. In other words, the task in frequent set mining
is to compute

{X ∈ L | suppD(X) ≥ minsup}.

The itemsets in the result are called frequent itemsets. Since the support of an
itemset decreases w.r.t. set inclusion, the A Priori property,

X ⊆ Y ⇒ suppD(Y) ≤ suppD(X),

a simple level-wise search algorithm suffices to compute all the frequent item-
sets. Many efficient algorithms for this task are known, see, e.g. [50]. Note,
however, that since the size of the output can be exponential in the number
of items, the term efficient is used w.r.t. the size of the output. Moreover,
note that whenever L and q satisfy an A Priori like property, similarly efficient
algorithms exist [89].

8

2.1. Introduction

Sets of patterns
A major problem in frequent itemset mining, and pattern mining in general, is
the so-called pattern explosion. For tight interestingness constraints, e.g. a high
minsup threshold, only few, but well-known, patterns are returned. However,
when the constraints are loosened, pattern discovery methods quickly return
humongous amounts of patterns; the number of frequent itemsets is often many
orders of magnitude larger than the number of transactions in the dataset.

This pattern explosion is caused by the locality of the minimal support
constraint; each individual itemset that satisfies the constraint is added to the
result set, independent of the already returned sets. Hence, we end up with a
rather redundant set of patterns, in which many patterns essentially describe
the same part of the database. One could impose additional constraints on the
individual itemsets to reduce their number, such as closed frequent itemsets
[103]. While this somewhat alleviates the problem, redundancy remains an
issue.

We take a different approach: rather than focusing on the individual fre-
quent itemsets, we focus on the resulting set of itemsets. That is, we want
to find the best set of (frequent) itemsets. The question is, of course, what is
the best set? Clearly, there is no single answer to this question. For example,
one could search for small sets of patterns that yield good classifiers, or show
maximal variety [69,70].

We view finding the best set of itemsets as an induction problem. That
is, we want to find the set of patterns that describe the database best. There
are many different induction principles. So, again the question is which one to
take?

The classical statistical approach [114] would be to basically test hypotheses,
meaning that we would have to test every possible set of itemsets. Given the
typically huge number of frequent itemsets and the exponentially larger number
of sets of itemsets, testing all these pattern sets individually does not seem a
computationally attractive approach.

Alternatively, the Bayesian approach boils down to updating the a priori
distribution with the data [13]. This update is computed using Bayes’ rule,
which requires the computation of P (D | M). How to define this probability
for sets of frequent itemsets is not immediately obvious. Moreover, our pri-
mary goal is to find a descriptive model, not a generative one2. For the same
reason, principles that are geared towards predictive models, such as Statistical
Learning Theory [121], are not suitable. Again, we are primarily interested in
a descriptive model, not a predictive one.

The Minimal Description Length Principle (MDL) [52,53,108] on the other
hand, is geared towards descriptions of the data. One could summarise this

2 Although, in Chapter 5, we do build generative models from the small number of
selected itemsets that generates data virtually indiscernible from the original.

9

2. Krimp: Mining Itemsets that Compress

approach by the slogan: the best model compresses the data best. By taking this
approach we do not try to compress the set of frequent itemsets, rather, we want
to find that set of frequent itemsets that yields the best lossless compression
of the database.

The MDL principle provides us a fair way to balance the complexities of the
compressed database and the encoding. Note that both need to be considered
in the case of lossless compression. Intuitively, we can say that if the encoding
is too simple, i.e. it consists of too few itemsets, the database will hardly
be compressed. On the other hand, if we use too many, the code table for
coding/decoding the database will become too complex.

Considering the combination of the complexities of the compressed data
and the encoding is the cornerstone of the MDL principle; it ensures that the
model will not be overly elaborate or simplistic w.r.t. the complexity of the
data.

While MDL removes the need for user defined parameters, it comes with
its own problems: only heuristics, no guaranteed algorithms. However, our
experiments show that these heuristics give a dramatic reduction in the number
of itemsets. Moreover, the set of patterns discovered is characteristic of the
database as independent experiments verify; see Section 2.7.

We are not the first to address the pattern explosion, nor are we the first
to use MDL. We are the first, however, to employ the MDL principle to select
the best pattern set. For a discussion of related work, see Section 2.6.

A primary version of the Krimp algorithm (although not yet under that
name) was published as [113] and a primary version of the Krimp classifier
as [78]. Here, we thoroughly discuss the theory and choices, as well as providing
extensive experimental validation of the methods on 27 datasets. In particular,
we further evaluate the heuristic choices made in the Krimp algorithm, show
that the selected itemsets model relevant structure in the data and that the
method is robust w.r.t noise.

The chapter is organised as follows. First, we cover the theory of using
MDL for selecting itemsets, after which we define our problem formally and
analyse its complexity. We introduce the heuristic Krimp algorithm for solv-
ing the problem in Section 2.3. In a brief interlude we provide a small sample
of the results. We continue with theory on using MDL for classification, and
introduce the Krimp classifier in Section 2.5. Related work is discussed in Sec-
tion 2.6. Section 2.7 provides extensive experimental validation of our method,
as well as an evaluation of the heuristic choices made in the design of the
Krimp algorithm. We round up with discussion in Section 2.8 and conclude in
Section 2.9.

10

2.2. Theory

2.2 Theory

In this section we state our problem formally. First we briefly discuss the MDL
principle. Next we introduce our models, code tables. We show how we can
encode a database using such a code table, and what the total size of the coded
database is. With these ingredients, we formally state the problems studied in
this chapter. Throughout the chapter all logarithms have base 2.

MDL
MDL (Minimum Description Length) [52,108], like its close cousin MML (Min-
imum Message Length) [126], is a practical version of Kolmogorov Complex-
ity [81]. All three embrace the slogan Induction by Compression. For MDL,
this principle can be roughly described as follows.

Given a set of models3 H, the best model H ∈ H is the one that minimises

L(H) + L(D | H)

in which

• L(H) is the length, in bits, of the description of H, and

• L(D | H) is the length, in bits, of the description of the data when
encoded with H.

This is called two-part MDL, or crudeMDL. As opposed to refinedMDL, where
model and data are encoded together [53]. We use this particular version
of MDL because we are specifically interested in the compressor: the set of
frequent itemsets that yields the best compression. Further, although refined
MDL has stronger theoretical foundations, it cannot be computed except in
some special cases.

To use MDL, we have to define what our models H are, how a H ∈ H
describes a database, and how all of this is encoded in bits.

MDL for itemsets
The key idea of our compression based approach is the code table. A code table
is a simple two-column translation table that has itemsets on the left-hand side
and a code for each itemset on its right-hand side. With such a code table we
find, through MDL, the set of itemsets that together optimally describe the
data.

3 MDL-theorists tend to talk about hypothesis in this context, hence the H; see [52] for
the details.

11

2. Krimp: Mining Itemsets that Compress

Definition 1. Let I be a set of items and C a set of code words. A code table
CT over I and C is a two-column table such that:

1. The first column contains itemsets, that is, subsets over I. This column
contains at least all singleton itemsets.

2. The second column contains elements from C, such that each element of
C occurs at most once.

An itemset X, drawn from the power set of I, i.e. X ∈ P(I), occurs in CT ,
denoted by X ∈ CT iff X occurs in the first column of CT , similarly for a
code C ∈ C. For X ∈ CT , codeCT (X) denotes its code, i.e. the corresponding
element in the second column. We call the set of itemsets {X ∈ CT} the
coding set CS. For the number of itemsets in the code table we write |CT |,
i.e. we define |CT | = |{X ∈ CT}|. Likewise, |CT \ I| indicates the number of
non-singleton itemsets in the code table.

To encode a transaction t from database D over I with code table CT , we
require a cover function cover(CT, t) that identifies which elements of CT are
used to encode t. The parameters are a code table CT and a transaction t,
the result is a disjoint set of elements of CT that cover t. Or, more formally, a
cover function is defined as follows.

Definition 2. Let D be a database over a set of items I, t a transaction drawn
from D, let CT be the set of all possible code tables over I, and CT a code table
with CT ∈ CT . Then, cover : CT × P(I) � P(P(I)) is a cover function iff it
returns a set of itemsets such that

1. cover(CT, t) is a subset of CS, the coding set of CT , i.e.
X ∈ cover(CT, t) � X ∈ CT

2. if X,Y ∈ cover(CT, t), then either X = Y or X ∩ Y = ∅

3. the union of all X ∈ cover(CT, t) equals t, i.e.
t =

⋃
X∈cover(CT,t)X

We say that cover(CT, t) covers t. Note that there exists at least one well-
defined cover function on any code table CT over I and any transaction t ∈
P(I), since CT contains at least the singleton itemsets from I.

To encode a database D using code table CT we simply replace each trans-
action t ∈ D by the codes of the itemsets in the cover of t,

t � { codeCT (X) | X ∈ cover(CT, t) }.

Note that to ensure that we can decode an encoded database uniquely we
assume that C is a prefix code, in which no code is the prefix of another code [35].
(Confusingly, such codes are also known as prefix-free codes [81].)

12

2.2. Theory

Since MDL is concerned with the best compression, the codes in CT should
be chosen such that the most often used code has the shortest length. That
is, we should use an optimal prefix code. Note that in MDL we are never
interested in materialised codes, but only in the complexities of the model
and the data. Therefore, we are only interested in the lengths of the codes of
itemsets X ∈ CT . As there exists a nice correspondence between code lengths
and probability distributions (see, e.g. [81]), we can calculate the optimal code
lengths through the Shannon entropy. So, to determine the complexities we do
not have to operate an actual prefix coding scheme such as Shannon-Fano or
Huffman encoding.

Theorem 1. Let P be a distribution on some finite set D, there exists an
optimal prefix code C on D such that the length of the code for d ∈ D, denoted
by L(d) is given by

L(d) = − log(P (d)).
Moreover, this code is optimal in the sense that it gives the smallest expected
code size for data sets drawn according to P . (For the proof, please refer to
Theorem 5.4.1 in [35])

The optimality property means that we introduce no bias using this code
length. The probability distribution induced by a cover function is, of course,
simply given by the relative usage frequency of each of the item sets in the
code table. To determine this, we need to know how often a certain code is
used. We define the usage count of an itemset X ∈ CT as the number of
transactions t from D where X is used to cover. Normalised, this frequency
represents the probability that this code is used in the encoding of an arbitrary
t ∈ D. The optimal code length then is −log of this probability [81], and a
code table is optimal if all its codes have their optimal length. Note that we
use fractional lengths, not integer-valued lengths of materialised codes. This
ensures that the length of a code accurately represents its usage probability,
and since we are not interested in materialised codes, only relative lengths are
of importance. After all, our ultimate goal is to score the optimal code table
and not to actually compress the data. More formally, we have the following
definition.

Definition 3. Let D be a transaction database over a set of items I, C a prefix
code, cover a cover function, and CT a code table over I and C. The usage
count of an itemset X ∈ CT is defined as

usageD(X) = |{ t ∈ D | X ∈ cover(CT, t) }|.
The probability of X ∈ CT being used in the cover of an arbitrary transaction
t ∈ D is thus given by

P (X | D) = usageD(X)∑
Y ∈CT usageD(Y) .

13

2. Krimp: Mining Itemsets that Compress

The codeCT (X) for X ∈ CT is optimal for D iff

L(codeCT (X)) = |codeCT (X)| = − log(P (X|D)).

A code table CT is code-optimal for D iff all its codes,

{ codeCT (X) | X ∈ CT },

are optimal for D.

From now onward we assume that code tables are code-optimal for the
database they are induced on, unless we state differently.

Now, for any database D and a code table CT over the same set of items I
we can compute L(D | CT). It is simply the summation of the encoded lengths
of the transactions. The encoded size of a transaction is simply the sum of
the sizes of the codes of the itemsets in its cover. In other words, we have the
following trivial lemma.

Lemma 2. Let D be a transaction database over I, CT be a code table over I
and code-optimal for D, cover a cover function, and usage the usage function
for cover.

1. For any t ∈ D its encoded length, in bits, denoted by L(t | CT), is

L(t | CT) =
∑

X∈cover(CT,t)

L(codeCT (X)).

2. The encoded size of D, in bits, when encoded by CT , denoted by L(D |
CT), is

L(D | CT) =
∑
t∈D

L(t | CT).

With Lemma 2, we can compute L(D | H). To use the MDL principle, we
still need to know what L(H) is, i.e. the encoded size of a code table.

Recall that a code table is a two-column table consisting of itemsets and
codes. As we know the size of each of the codes, the encoded size of the second
column is easily determined: it is simply the sum of the lengths of the codes.
For encoding the itemsets, the first column, we have to make a choice.

A naïve option would be to encode each item with a binary integer encoding,
that is, using log(I) bits per item. Clearly, this is hardly optimal; there is no
difference in encoded length between highly frequent and infrequent items.

A better choice is to encode the itemsets using the codes of the simplest code
table, i.e. the code table that contains only the singleton itemsets I ∈ I. This

14

2.2. Theory

code table, with optimal code lengths for database D, is called the standard
code table for D, denoted by ST . It is the optimal encoding of D when nothing
more is known than just the frequencies of the individual items; it assumes
the items to be fully independent. As such, it provides a practical bound:
ST provides the simplest, independent, description of the data. This encoding
allows us to reconstruct the database up to the names of the individual items.
With these choices, we have the following definition.

Definition 4. Let D be a transaction database over I and CT a code table
that is code-optimal for D. The size of CT in bits, denoted by L(CT | D), is
given by

L(CT | D) =
∑

X∈CT :usageD(X) 6=0

|codeST (X)|+ |codeCT (X)|.

Note that we do not take itemsets with zero usage into account. Such itemsets
are not used to code. We use L(CT) wherever D is clear from context.

With these results we know the total size of our encoded database. It is
simply the size of the encoded database plus the size of the code table. That
is, we have the following result.

Definition 5. Let D be a transaction database over I, let CT be a code table
that is code-optimal for D and cover a cover function. The total compressed
size of the encoded database and the code table, in bits, denoted by L(D, CT) is
given by

L(D, CT) = L(D | CT) + L(CT | D).

Now that we know how to compute L(D, CT), we can formalise our problem
using MDL. Before that, we discuss three design choices we did not mention so
far, because they do not influence the total compressed size of a database.

First, when encoding a database D with a code table CT , we do not mark
the end of a transaction, i.e. we do not use stop-characters. Instead, we
assume a given framework that needs to be filled out with the correct items
upon decoding. Since such a framework adds the same additive constant to
L(D | CT) for any CT over I, it can be disregarded.

Second, for more detailed descriptions of the items in the decoded database,
one could add an ASCII table giving the names of the individual items to a
code table. Since such a table is the same for all code tables over I, this is
again an additive constant we can disregard for our purposes.

Last, since we are only interested in the complexity of the content of the
code table, i.e. the itemsets, we disregard the complexity of its structure. That
is, like for the database, we assume a static framework that fits any possible
code table, consisting of up to |P(I)| itemsets, and is filled out using the above

15

2. Krimp: Mining Itemsets that Compress

encoding. The complexity of this framework is equal for any code table CT
and dataset D over I, and therefore we can also disregard this third additive
constant when calculating L(D, CT).

The problem
Our goal is to find the set of itemsets that best describe the database D. Recall
that the set of itemsets of a code table, i.e. {X ∈ CT}, is called the coding
set CS. Given a coding set, a cover function and a database, a (code-optimal)
code table CT follows automatically.

Given a set of itemsets F , the problem is to find a subset of F which leads
to a minimal encoding; where minimal pertains to all possible subsets of F .
To make sure this is possible, F should contain at least the singleton item sets
X ∈ I. We will call such a set, a candidate set. By requiring the smallest coding
set, we make sure the coding set contains no unused non-singleton elements,
i.e. usageCT (X) > 0 for any non-singleton itemset X ∈ CT .

Minimal Coding Set Problem Let I be a set of items and let D be a
dataset over I, cover a cover function, and F a set of candidate itemsets. Find
the smallest coding set CS ⊆ F such that for the corresponding code table CT
the total compressed size, L(D, CT), is minimal.

A solution for the Minimal Coding Set Problem allows us to find the ‘best’
coding set from a given collection of itemsets, e.g. (closed) frequent itemsets
for a given minimal support. If F = {X ∈ P(I) | suppD(X) > 0}, i.e. when F
consists of all itemsets that occur in the data, there exists no candidate set F ′
that results in a smaller total encoded size. Hence, in this case the solution is
truly the minimal coding set for D and cover.

In order to solve the Minimal Coding Set Problem, we have to find the
optimal code table and cover function. To this end, we have to consider a
humongous search space, as we will detail in the next subsection.

How hard is the problem?
The number of coding sets does not depend on the actual database, and nor
does the number of possible cover functions. Because of this, we can compute
the size of our search space rather easily.

A coding set contains the singleton itemsets plus an almost arbitrary subset
of P(I). Almost, since we are not allowed to choose the |I| singleton itemsets.

In other words, there are

2|I|−|I|−1∑
k=0

(
2|I| − |I| − 1

k

)

16

2.2. Theory

Table 2.1: The number of cover possibilities for a database of one (1) transac-
tion over I.

|I| NCP (I) |I| NCP (I)
1 1 4 2.70× 1012

2 8 5 1.90× 1034

3 8742 6 4.90× 1087

possible coding sets. In order to determine which one of these minimises the
total encoded size, we have to consider all corresponding (code-optimal) code
tables using every possible cover function. Since every itemset X ∈ CT can oc-
cur only once in the cover of a transaction and no overlap between the itemsets
is allowed, this translates to traversing the code table once for every transac-
tion. However, as each possible code table order may result in a different cover,
we have to test every possible code table order per transaction to cover. Since
a set of n elements admits n! orders, the total size of the search space is as
follows.

Lemma 3. For one transaction over a set of items I, the number of cover
possibilities, that is number of ordered coding sets, is given by NCP (I).

NCP (I) =
2|I|−|I|−1∑
k=0

(
2|I| − |I| − 1

k

)
× (k + |I|)!

So, even for a rather small set I and a database of only one transaction, the
search space we are facing is already huge. Table 2.1 gives an approximation
of NCP for the first few sizes of I. Clearly, the search space is far too large to
consider exhaustively.

To make matters worse, there is no useable structure that allows us to prune
level wise as the attained compression is not monotone w.r.t. the addition of
itemsets. So, without calculating the usage of the itemsets in CT , it is generally
impossible to call the effects (improvement or degrading) on the compression
when an itemset is added to the code table. This can be seen as follows.

Suppose a database D, itemsets X and Y such that X ⊂ Y , and a coding
set CS, all over I. The addition of X to CS, can lead to a degradation of the
compression, first and foremost as X may add more complexity to the code
table than is compensated for by using X in encoding D. Second, X may get
in ‘the way’ of itemsets already in CS, as such providing those itemsets with
lower usage, longer codes and thus leading to massively worse compression.
Instead, let us consider adding Y . While more complex, exactly those items
Y \X may replace the hindered itemsets. As such Y may circumvent getting

17

2. Krimp: Mining Itemsets that Compress

Algorithm 1 The Standard Code Table Algorithm
Require: A transaction database D over a set of items I.
Ensure: The standard code table CT for D.

StandardCodeTable (t, CT) :
1: CT ← ∅
2: for all X ∈ I do
3: insert X into CT
4: usageD(X)← suppD(X)
5: codeCT (x)← optimal code for X
6: end for
7: return CT

‘in the way’, and thus lead to an improved compression. However, this can just
as well be the other way around, as exactly those items can also lead to low
usage and/or overlap with other/more existing itemsets in CS.

2.3 Algorithms

In this section we present algorithms for solving the problem formulated in the
previous section. As shown above, the search space one needs to consider for
finding the optimal code table is far too large to be considered exhaustively.
We therefore have to resort to heuristics.

Basic heuristic
To cut down a large part of the search space, we use the following simple greedy
search strategy:

• Start with the standard code table ST , containing only the singleton
itemsets I ∈ I.

• Add the itemsets from F one by one. If the resulting codes lead to a
better compression, keep it. Otherwise, discard the set.

To turn this sketch into an algorithm, some choices have to be made. Firstly,
in which order are we going to encode a transaction? So, what cover function
are we going to employ? Secondly, in which order do we add the itemsets?
Finally, do we prune the newly constructed code table before we continue with
the next candidate itemset or not?

Before we discuss each of these questions, we briefly describe the initial
encoding. This is, of course, the encoding with the standard code table. For
this, we need to construct a code table from the elements of I. The algorithm

18

2.3. Algorithms

Algorithm 2 The StandardCover Algorithm
Require: Transaction t ∈ D and code table CT , with CT and D over a set of

items I.
Ensure: A cover of t using non-overlapping elements of CT .

StandardCover (t, CT) :
1: S ← smallest element X of CT in Standard Cover Order for which
X ⊆ t

2: if t \ S = ∅ then
3: Res← {S}
4: else
5: Res← {S} ∪ StandardCover(t \ S,CT)
6: end if
7: return Res

called Standard Code Table, given in pseudo-code as Algorithm 1, returns
such a code table. It takes a set of items and a database as parameters and
returns a code table. Note that for this code table all cover functions reduce to
the same, namely the cover function that replaces each item in a transaction
with its singleton itemset. As the singleton itemsets are mutually exclusive, all
elements X ∈ I will be used suppD(X) times by this cover function.

Standard cover function

From the problem complexity analysis in the previous section it is quite clear
that finding an optimal cover of the database is practically impossible, even
if we are given the optimal set of itemsets as the code table: examining all
|CT |! possible permutations is already virtually impossible for one transaction,
let alone expanding this to all possible combinations of permutations for all
transactions.

We therefore employ a heuristic and introduce a standard cover function
which considers the code table in a fixed order. The pseudo-code for this
Standard Cover function is given as Algorithm 2. For a given transaction t,
the code table is traversed in a fixed order. An itemset X ∈ CT is included in
the cover of t iff X ⊆ t. Then, X is removed from t and the process continues
to cover the uncovered remainder, i.e. t \ X. Using the same order for every
transaction drastically reduces the complexity of the problem, but leaves the
choice of the order.

Again, considering all possible orders would be best, but is impractical at
best. A more prosaic reason is that our algorithm will need a definite order;
random choice does not seem the wisest of ideas. When choosing an order, we
should take into account that the order in which we consider the itemsets may

19

2. Krimp: Mining Itemsets that Compress

make it easier or more difficult to insert candidate itemsets into an already
sorted code table.

We choose to sort the elements X ∈ CT first decreasing on length, second
decreasing on support in D and thirdly lexicographically increasing to make
it a total order. To describe the order compactly, we introduce the following
notation. We use ↓ to indicate an attribute is sorted descending, and ↑ to
indicate it is sorted ascending:

|X| ↓ suppD(X) ↓ lexicographically ↑

We call this the Standard Cover Order. The rationale is as follows. To reach
a good compression we need to replace as many individual items as possible,
by as few and short as possible codes. The above order gives priority to long
itemsets, as these can replace as many as possible items by just one code.
Further, we prefer those itemsets that occur frequently in the database to be
used as often as possible, resulting in high usage values and thus short codes.
We rely on MDL not to select overly specific itemsets, as such sets can only be
infrequently used and would thus receive relatively long codes.

Standard candidate order
Next, we address the order in which candidate itemsets will be regarded. Prefer-
ably, the candidate order should be in concord with the cover strategy detailed
above. We therefore choose to sort the candidate itemsets such that long, fre-
quently occurring itemsets are given priority. Again, to make it a total order
we thirdly sort lexicographically. So, we sort the elements of F as follows:

suppD(X) ↓ |X| ↓ lexicographically ↑

We refer to this as the Standard Candidate Order. The rationale for it is as
follows. Itemsets with the highest support, those with potentially the shortest
codes, end up at the top of the list. Of those, we prefer the longest sets first,
as these will be able to replace as many items as possible. This provides the
search strategy with the most general itemsets first, providing ever more specific
itemsets along the way.

A welcome advantage of the standard orders for both the cover function and
the candidate order is that we can easily keep the code table sorted. First, the
length of an itemset is readily available. Second, with this candidate order we
know that any candidate itemset for a particular length will have to be inserted
after any already present code table element with the same length. Together,
this means that we can insert a candidate itemset at the right position in the
code table in O(1) if we store the code table elements in an array (over itemset
length) of lists.

20

2.3. Algorithms

KRIMP

 add to
code table

compress database

accept /
reject

select pattern

MDL
elbatedoc

Database

Code table

elbatedoc

Many many patterns

Figure 2.1: Krimp in action

The Krimp algorithm
We now have the ingredients for the basic version of our compression algorithm:

• Start with the standard code table ST .

• Add the candidate itemsets from F one by one. Each time, take the
itemset that is maximal w.r.t. the standard candidate order. Cover the
database using the standard cover algorithm. If the resulting encoding
provides a smaller compressed size, keep it. Otherwise, discard it perma-
nently.

This basic scheme is formalised as the Krimp algorithm given as Algo-
rithm 3. For the choice of the name: ‘krimp’ is Dutch for ‘to shrink’. The
Krimp pattern selection process is illustrated in Figure 2.1.

Krimp takes as input a database D and a candidate set F . The result is
the best code table the algorithm has seen, w.r.t. the Minimal Coding Set
Problem.

Now, it may seem that each iteration of Krimp can only lessen the usage of
an itemset in CT . For, if F1 ∩F2 6= ∅ and F2 is used before F1 by the standard
cover function, the usage of F1 will go down (provided the support of F2 does
not equal zero). While this is true, it is not the whole story. Because, what
happens if we now add an itemset F3, which is used before F2 such that:

F1 ∩ F3 = ∅ and F2 ∩ F3 6= ∅

The usage of F2 will go down, while the usage of F1 will go up again; by the
same amount, actually. So, taking this into consideration, even code table
elements with zero usage cannot be removed without consequence. However,
since they are not used in the actual encoding, they are not taken into account
while calculating the total compressed size for the current solution.

21

2. Krimp: Mining Itemsets that Compress

Algorithm 3 The Krimp Algorithm
Require: A transaction database D and a candidate set F , both over a set of

items I
Ensure: A solution to the Minimal Coding Set problem, code table CT

Krimp (D,F) :
1: CT ← Standard Code Table(D)
2: Fo ← F in Standard Candidate Order
3: for all F ∈ Fo \ I do
4: CTc ← (CT ∪ F) in Standard Cover Order
5: if L(D, CTc) < L(D, CT) then
6: CT ← CTc
7: end if
8: end for
9: return CT

In the end, itemsets with zero usage can be safely removed though. After
all, they do not code, so they are not part of the optimal answer that should
consist of the smallest coding set. Since the singletons are required in a code
table by definition, these remain.

Pruning
That said, we can’t be sure that leaving itemsets with a very low usage count
in CT is the best way to go. As these have a very small probability, their
respective codes will be very long. Such long codes may make better code tables
unreachable for the greedy algorithm; it may get stuck in a local optimum. As
an example, consider the following three code tables:

CT1 = {{X1, X2}, {X1}, {X2}, {X3}}
CT2 = {{X1, X2, X3}, {X1, X2}, {X1}, {X2}, {X3}}
CT3 = {{X1, X2, X3}, {X1}, {X2}, {X3}}

Assume that suppD({X1, X2, X3}) = suppD({X1, X2}) − 1. Given these
assumptions, standard Krimp will never consider CT3, but it is very well pos-
sible that L(D, CT3) < L(D, CT2) and that CT3 provides access to a branch of
the search space that is otherwise left unvisited. To allow for searching in this
direction, we can prune the code table that Krimp is considering.

There are many possibilities to this end. The most obvious strategy is
to check the attained compression of all valid subsets of CT including the
candidate itemset F , i.e. { CTp ⊆ CT | F ∈ CTp ∧ I ⊂ CTp }, and
choose CTp with minimal L(D, CTp). In other words, prune when a candidate
itemset is added to CT , but before the acceptance decision. Clearly, such a

22

2.3. Algorithms

pre-acceptance pruning approach implies a huge amount of extra computation.
Since we are after a fast and well-performing heuristic we do not consider this
strategy.

A more efficient alternative is post-acceptance pruning. That is, we only
prune when F is accepted: when candidate code table CTc = CT ∪F is better
than CT , i.e. L(D, CTc) < L(D, CT), we consider its valid subsets. This
effectively reduces the pruning search space, as only few candidate itemsets
will be accepted.

To cut the pruning search space further, we do not consider all valid subsets
of CT , but iteratively consider for removal those itemsets X ∈ CT for which
usageD(X) has decreased. The rationale is that for these itemsets we know
that their code lengths have increased; therefore, it is possible that these sets
now harm the compression.

In line with the standard order philosophy, we first consider the itemset with
the smallest usage and thus the longest code. If by pruning an itemset the total
encoded size decreases, we permanently remove it from the code table. Further,
we then update the list of prune candidates with those item sets whose usage
consequently decreased. This post-acceptance pruning strategy is formalised
in Algorithm 4. We refer to the version of Krimp that employs this pruning
strategy (which would be on line 6 of Algorithm 3) as Krimp with pruning. In
Section 2.7 we will show that employing pruning improves the performance of
Krimp.

Algorithm 4 Code Table Post-Acceptance Pruning
Require: Code tables CTc and CT , for a transaction database D over a set

of items I, where {X ∈ CT} ⊂ {Y ∈ CTc} and L(D, CTc) < L(D, CT).
Ensure: Pruned code table CTp, with L(D, CTp) ≤ L(D, CTc), CTp ⊆ CTc.

PruneCodeTable (CTc, CT,D) :
1: CTp ← CTc
2: PruneSet← { X ∈ CT | usageCTc(X) < usageCT (X) }
3: while PruneSet 6= ∅ do
4: PruneCand← X ∈ PruneSet with lowest usageCTp(X)
5: PruneSet← PruneSet \ PruneCand
6: CTt ← CTp \ PruneCand
7: if L(D, CTt) < L(D, CTp) then
8: PruneSet← PruneSet∪{ X ∈ CTt | usageCTt(X) < usageCTp(X) }
9: CTp ← CTt
10: end if
11: end while
12: return CTp

23

2. Krimp: Mining Itemsets that Compress

Complexity
Here we analyse the complexity of the Krimp algorithms step–by–step. We
start with time-complexity, after which we cover memory-complexity.

Given a set of (frequent) itemsets F , we first order this set, requiring
O(|F| log |F|) time. Then, every element F ∈ F is considered once. Using
a hash-table implementation we need only O(1) to insert an element at the
right position in CT , keeping CT ordered. To calculate the total encoded size
L(D, CT), the cover function is applied to each t ∈ D. For this, the standard
cover function considers each X ∈ CT once for a t. Checking whether X is
an (uncovered) subset of t takes at most O(|I|). Therefore, covering the full
database takes O(|D| × |CT | × |I|) time. Then, optimal code lengths and the
total compressed size can be computed in O(|CT |).

Note that we know the code table will grow to at most |F| elements. So,
given a set of (frequent) itemsets F and a cover function that considers the
elements of the code table in a static order, the worst-case time-complexity of
the Krimp algorithm without pruning is

O(|F| log |F|+ |F| × (|D| × |F| × |I|+ |F|)).

When we do employ pruning, in the worst-case we have to reconsider each
element in CT after accepting each F ∈ F ,

O(|F| log |F|+ |F|2 × (|D| × |F| × |I|+ |F|)).

This looks quite horrendous. However, it is not as bad as it seems.
First of all, due to MDL, the number of elements in the code table is very

small, |CT | � |D| � |F|, in particular when pruning is enabled. In fact, this
number (typically 100 to 1000) can be regarded as a constant, removing it from
the big-O notation. Therefore,

O(|F| log |F|+ |D| × |F| × |I|)

is a better estimate for the time-complexity for Krimp with or without pruning
enabled.

Next, for I of reasonable size (say, up to 1000), bitmaps can be used to
represent the itemsets. This allows for subset checking in O(1), again removing
a term from the complexity. Further, for any new candidate code table itemset
F ∈ F , the database needs only to be covered partially; so instead of all |D|
transactions only those d transactions in which F occurs need to be covered. If
D is large and the minsup threshold is low, d is generally very small (d� |D|)
and can be regarded as a constant. So, in the end we have

O(|F| log |F|+ |F|).

24

2.4. Interlude

Now, we consider the order of the memory requirements of Krimp. The worst-
case memory requirements of the Krimp algorithms are

O(|F|+ |D|+ |F|).

Again, as the code table is dwarfed by the size of the database, it can be
regarded a (small) constant. The major part is the storage of the candidate
code table elements. Sorting these can be done in place. As it is iterated in
order, it can be handled from the hard drive without much performance loss.
Preferably, the database is kept resident, as it is covered many many times.

2.4 Interlude

Before we continue with more theory, we will first present some results on a
small number of datasets to provide the reader with some measure and intuition
on the performance of Krimp. To this end, we ran Krimp with post-acceptance
pruning on six datasets, using all frequent itemsets mined at minsup = 1 as
candidates. The results of these experiments are shown in Table 2.2. Per
dataset, we show the number of transactions and the number of candidate item-
sets. From these latter figures, the problem of the pattern explosion becomes
clear: up to 5.5 billion itemsets can be mined from the Mushroom database,
which consists of only 8124 transactions. It also shows that Krimp successfully
battles this explosion, by selecting only hundreds of itemsets from millions up
to billions. For example, from the 5.5 billion for Mushroom, only 442 itemsets
are chosen; a reduction of 7 orders of magnitude.

For the other datasets, we observe the same trend. In each case, fewer than
2000 itemsets are selected, and reductions of many orders of magnitude are at-
tained. The number of selected itemsets depends mainly on the characteristics
of the data. These itemsets, or the code tables they form, compress the data
to a fraction of its original size. This indicates that very characteristic itemsets
are chosen, and that the selections are non-redundant. Further, the timings for
these experiments show that the compression-based selection process, although
computationally complex, is a viable approach in practice. The selection of the
above mentioned 442 itemsets from 5.5 billion itemsets takes under 4 hours.
For the Adult database, Krimp considers over 400.000 itemsets per second, and
is limited not by the CPUs but by the rate with which the itemsets can be read
from the hard disk.

Given this small sample of results, we now know that indeed few, charac-
teristic and non-redundant itemsets are selected by Krimp, in number many
orders smaller than the complete frequent itemset collections. However, this
leaves the question of how good are the returned pattern sets?

25

2. Krimp: Mining Itemsets that Compress

Table 2.2: Results of running Krimp on a few datasets.

Krimp

Dataset |D| |F| |CT \ I| L(D,CT)
L(D,ST) % time

Adult 48842 58461763 1303 24.4 2m25
Chess (kr–k) 28056 373421 1684 61.6 13s
Led7 3200 15250 152 28.6 0.05s
Letter recognition 20000 580968767 1780 35.7 52m33
Mushroom 8124 5574930437 442 20.6 3h40
Pen digits 10992 459191636 1247 42.3 31m33

For all datasets the candidate set F was mined with minsup = 1, and
Krimp with post-acceptance pruning was used. For Krimp, the size of
the resulting code table (minus the singletons), the compression ratio
and the run time is given. The compression ratio is the encoded size of
the database with the obtained code table divided by the encoded size
with the standard code table. Timings recorded on quad-core 3.0 Ghz
Xeon machines.

2.5 Classification by Compression

In this section, we describe a method to verify the quality of the Krimp selec-
tion in an independent way. To be more precise, we introduce a simple classi-
fication scheme based on code tables, previously published as [78]. We answer
the quality question by answering the question: how well do Krimp code tables
classify? For this, classification performance is compared to that of state-of-
the-art classifiers in the Section 2.7.

Classification through MDL

If we assume that our database of transactions is an i.i.d. sample from some
underlying data distribution, we expect the optimal code table for this database
to compress an arbitrary transaction sampled from this distribution well. We
make this intuition more formal in Lemma 4.

We say that the itemsets in CT are independent if any co-occurrence of
two itemsets X,Y ∈ CT in the cover of a transaction is independent. That is,
P (XY) = P (X)P (Y). Clearly, this is a Naïve Bayes [131] like assumption.

Lemma 4. Let D be a bag of transactions over I, cover a cover function, CT
the optimal code table for D and t an arbitrary transaction over I. Then, if

26

2.5. Classification by Compression

the itemsets X ∈ cover(CT, t) are independent,

L(t | CT) = − log (P (t | D)) .

Proof.

L(t | CT) =
∑

X∈cover(CT,t)

L(codeCT (X))

=
∑

X∈cover(CT,t)

− log (P (X | D))

= − log

 ∏
X∈cover(CT,t)

P (X | D)


= − log (P (t | D)) .

The last equation is only valid under the Naïve Bayes like assumption,
which might be violated. However, if there are itemsets X,Y ∈ CT such
that P (XY) > P (X)P (Y), we would expect an itemset Z ∈ CT such that
X,Y ⊂ Z. Therefore, we do not expect this assumption to be overly optimistic.

Now, assume that we have two databases generated from two different un-
derlying distributions, with corresponding optimal code tables. For a new
transaction that is generated under one of the two distributions, we can now
decide to which distribution it most likely belongs. That is, under the Naïve
Bayes assumption, we have the following lemma.

Lemma 5. Let D1 and D2 be two bags of transactions over I, sampled from two
different distributions, cover a cover function, and t an arbitrary transaction
over I. Let CT1 and CT2 be the optimal code tables for resp. D1 and D2.
Then, from Lemma 4 it follows that

L(t | CT1) > L(t | CT2) ⇒ P (t | D1) < P (t | D2).

Hence, the Bayes optimal choice is to assign t to the distribution that leads
to the shortest code length.

The Krimp classifier
The previous subsection, with Lemma 5 in particular, suggests a straight-
forward classification algorithm based on Krimp code tables. This provides
an independent way to assess the quality of the resulting code tables. The
Krimp Classifier is given in Algorithm 5. The Krimp classification process is
illustrated in Figure 2.2.

27

2. Krimp: Mining Itemsets that Compress

Database
(n classes)

Split
per class

Apply
KRIMP

Code table
per class

Shortest
code wins!

codetable

codetable

Encode
unseen

transactions

Figure 2.2: The Krimp Classifier in action

The classifier consists of a code table per class. To build it, a database with
class labels is needed. This database is split according to class, after which
the class labels are removed from all transactions. Krimp is applied to each of
the single-class databases, resulting in a code table per class. At the very end,
after any pruning has been applied, each code table is Laplace corrected: the
usage of each itemset in CTk is increased by one. This ensures that all itemsets
in CTk have non-zero usage, therefore have a code, i.e. their code length can
be calculated, and thus, that any arbitrary transaction t ⊆ I can be encoded.

Algorithm 5 The Krimp Classifier
Require: A database D with class labels, and transaction t, both over set of

items I
Ensure: The class label assigned to t

KrimpClassify (t,D) :
1: K ← { class labels of D }
2: {Dk} ← split D on K, remove each k ∈ K from each t ∈ D
3: for all Dk do
4: Fk ← MineCandidates(Dk)
5: CTk ← Krimp(Dk,Fk)
6: for X ∈ CTk do usageCTk(X)← usageCTk(X) + 1
7: end for
8: return arg min

k∈K
L(t | CTk)

28

2.6. Related Work

(Recall that we require a code table to always contain all singleton itemsets.)
When the compressors have been constructed, classifying a transaction is

trivial. Simply assign the class label belonging to the code table that provides
the minimal encoded length for the transaction.

2.6 Related Work

MDL in data mining
MDL was introduced by [108] as a noise-robust model selection technique.
In the limit, refined MDL is asymptotically the same as the Bayes Informa-
tion Criterion (BIC), but the two may differ (strongly) on finite data sam-
ples [53]. We are not the first to use MDL, nor are we the first to use MDL
in data mining or machine learning. Many, if not all, data mining problems
can be related to Kolmogorov Complexity, which means they can be practi-
cally solved through compression [42], e.g. clustering (unsupervised learning),
classification (supervised learning), distance measurement. Other examples in-
clude feature selection [105], defining a parameter-free distance measure on
sequential data [67,68], discovering communities in matrices [26], and evolving
graphs [115].

Pattern selection
Most, if not all pattern mining approaches suffer from the pattern explosion.
As discussed before, its cause lies primarily in the large redundancy in the
returned pattern sets. This has long since been recognised as a problem and
has received ample attention.

To address this problem, closed [103] and non-derivable [25] itemsets have
been proposed, which both provide a concise lossless representation of the orig-
inal itemsets. However, these methods deteriorate under small amounts of
noise. Similar, but providing a partial (i.e. lossy) representation, are maximal
itemsets [12] and δ-free sets [36]. Along these lines, Yan et al [135] proposed
a method that selects k representative patterns that together summarize the
frequent pattern set.

Recently, the approach of finding small subsets of informative patterns that
describe the database has attracted a significant amount of research [20,70,95].
First, there are the methods that provide a lossy description of the data. These
strive to describe just part of the data, and as such may overlook important in-
teractions. Summarization as proposed by [28] is a compression-based approach
that identifies a group of itemsets such that each transaction is summarised by
one itemset with as little loss of information as possible. [129] find summary
sets, sets of itemsets that contain the largest frequent itemset covering each
transaction.

29

2. Krimp: Mining Itemsets that Compress

Pattern Teams [69] are groups of most-informative length-k itemsets [70].
These are exhaustively selected through an external criterion, e.g. joint entropy
or classification accuracy. As this approach is computationally intensive, the
number of team members is typically < 10. [20] proposed a similar selection
method that can consider larger pattern sets. However, it also requires the
user to choose a quality measure to which the pattern set has to be optimized,
unlike our parameter-free and lossless method.

Second, in the category of lossless data description, we recently [113] intro-
duced the MDL-based Krimp algorithm. In this chapter we extend the theory,
tune the pruning techniques and thoroughly verify the validity of the chosen
heuristics, as well as provide extensive experimental evaluation of the quality
of the returned code tables.

Tiling [48] is closely related to our approach. A tiling is a cover of the
database by a group of (overlapping) item sets. Itemsets with maximal uncov-
ered area are selected, i.e. as few as possible itemsets cover the data. Unlike
our approach, model complexity is not explicitly taken into account. Another
major difference in the outcome is that Krimp selects more specific (longer)
itemsets. [134] proposed a slight reformulation of Tiling that allows tiles to also
cover transactions in which not all its items are present.

Two approaches inspired by Krimp are Pack [118] and LESS [60]. Both
approaches consider the data 0/1 symmetric, unlike here, where we only regard
items that are present (1s). LESS employs a generalised Krimp encoding
to select only tens of low-entropy sets [59] as lossless data descriptions, but
attains worse compression ratios than Krimp. Pack does provide a significant
improvement in that regard. It employs decision trees to succinctly transmit
individual attributes, and these models can be built from data or candidate
sets. Typically, Pack selects many more itemsets than Krimp.

Our approach seems related to the set cover problem [65], as both try to
cover the data with sets. Although NP-complete, fast approximation algo-
rithms exist for set cover. These are not applicable for our setup though, as
in set cover the complexity of the model is not taken into account. Another
difference is that we do not allow overlap between itemsets. As optimal com-
pression is the goal, it makes intuitive sense that overlapping elements may
lead to shorter encodings, but it is not immediately clear how to achieve this
in a fast heuristic.

Classification
A lot of classification algorithms have been proposed, many of which fall into
either the class of rule-induction-based or that of association-rule-based meth-
ods. Because we use classification as a quality measure for the patterns that
Krimp picks, we will compare our results with those obtained by some of the
best existing classifiers. Such comparison can be done with rule-induction-

30

2.7. Experiments

based methods such as C4.5 [106], FOIL [107] and CPAR [136]. [91] use MDL
to prune decision trees for classification. However, we are more interested in
the comparison to association-rule-based algorithms like iCAEP [137], HAR-
MONY [128], CBA [84] and LB [93] as these also employ a collection of itemsets
for classification. Because we argued that our method is strongly linked to the
principle of Naïve Bayes (NB) [40] it is imperative we compare to it. Because,
opposed to Krimp, these methods were devised with the goal of classification
in mind, we would expect them to (slightly) outperform the Krimp classifier.

2.7 Experiments

In this section we experimentally evaluate the Krimp algorithms, and the un-
derlying heuristics, and assess the quality of the resulting code tables.

We first describe our setup in the next subsection and second the datasets
we use in the experiments. Then, we start our evaluation of Krimp by looking
at how many itemsets are selected and what compression ratios are attained.
The stability of these results, and whether these rely on specific itemsets is
explored next. Afterwards, we test through swap-randomisation whether the
code tables model relevant structure. In the next subsection the quality of the
code tables is independently validated through classification. Last, we evaluate
the cover and candidate order heuristics of Krimp.

Setup
We use the shorthand notation L% to denote the relative total compressed size
of D,

L(D, CT)
L(D, ST) %,

whereverD is clear from context. As candidates, F , we typically use all frequent
itemsets mined atminsup = 1, unless indicated otherwise. We use the AFOPT
miner [85], taken from the FIMI repository [50], to mine (closed) frequent
itemsets. The reported Krimp timings are of the selection process only and
do not include the mining and sorting of the candidate itemset collections.
All experiments were conducted on quad-core Xeon 3.0 GHz systems (in black
casing) running Windows Server 2003. Reported timings are based on four-
threaded runs, again, unless stated otherwise.

Data
For the experimental validation of our methods we use a wide range of freely
available datasets. From the LUCS/KDD data set repository [33] we take

31

2. Krimp: Mining Itemsets that Compress

Table 2.3: Statistics of the datasets used in the experiments.

Dataset |D| |I| density # classes L(D|ST)
Accidents 340183 468 7.22 - 74592568
Adult 48842 97 15.33 2 3569724
Anneal 898 71 20.15 5 62827
BMS-pos 515597 1657 0.39 - 25321966
BMS-webview 1 59602 497 0.51 - 1173962
BMS-webview 2 77512 3340 0.14 - 3747293
Breast 699 16 62.36 2 27112
Chess (k–k) 3196 75 49.33 2 687120
Chess (kr–k) 28056 58 12.07 18 1083046
Connect–4 67557 129 33.33 3 17774814
DNA amplification 4590 392 1.47 - 212640
Heart 303 50 27.96 5 20543
Ionosphere 351 157 22.29 2 81630
Iris 150 19 26.32 3 3058
Led7 3200 24 33.33 10 107091
Letter recognition 20000 102 16.67 26 1980244
Mammals 2183 121 20.5 - 320094
Mushroom 8124 119 19.33 2 1111287
Nursery 12960 32 28.13 5 569042
Page blocks 5473 44 25 5 216552
Pen digits 10992 86 19.77 10 1140795
Pima 768 38 23.68 2 26250
Pumsbstar 49046 2088 2.42 - 19209514
Retail 88162 16470 0.06 - 10237244
Tic–tac–toe 958 29 34.48 2 45977
Waveform 5000 101 21.78 3 656084
Wine 178 68 20.59 3 14101

Per dataset the number of transactions, the number of attributes, the
density (percentage of 1’s) and the number of bits required by Krimp to
compress the data using the singleton-only standard code table ST .

32

2.7. Experiments

some of the largest and most dense databases. We transformed the Connect-
4 dataset to a slightly less dense format by removing all ‘empty-field’ items.
From the FIMI repository [50] we use the BMS4 datasets [71]. Further, we use
the Mammals presence and DNA Amplification databases. The former con-
sists of presence records of European mammals5 within geographical areas of
50 × 50 kilometers [96]. The latter is data on DNA copy number amplifica-
tions. Such copies activate oncogenes and are hallmarks of nearly all advanced
tumours [101]. Amplified genes represent attractive targets for therapy, diag-
nostics and prognostics.

The details for these datasets are depicted in Table 2.3. For each database
we show the number of attributes, the number of transactions and the density:
the percentage of ‘present’ attributes. Last, we provide the total compressed
size in bits as encoded by the singleton-only standard code tables ST .

Selection
We first evaluate the question whether Krimp provides an answer to the pattern
explosion. To this end, we ran Krimp on 27 datasets, and analysed the outcome
code tables, with and without post-acceptance pruning. The results of these
experiments are shown as Table 2.4. As candidates itemset collections we mined
frequent itemsets of the indicated minsup thresholds. These were chosen as
low as possible, either storage-wise or computationally feasible.

The main result shown in the table is the reduction attained by the selection
process: up to 7 orders of magnitude. While the candidate sets contain millions
up to billions of itemsets, the resulting code tables typically contain hundreds to
thousands of non-singleton itemsets. These selected itemsets compress the data
well, typically requiring only a quarter to half of the bits of the independent ST
encoding. Dense datasets are compressed very well. For Adult and Mushroom,
ratios of resp. 24% and 21% are noted. Sparse data, on the other hand,
typically contains little structure. We see that such datasets (e.g. the Retail
and BMS datasets) indeed prove difficult to compress; relatively many itemsets
are required to provide a meagre compression.

Comparing between Krimp with and without post-acceptance pruning, we
see that enabling pruning provides the best: fewer itemsets (∼ 1000, on aver-
age) are returned, which provide better compression (avg. 2% improvement).
For Accidents and BMS-pos the difference in the number of selected itemsets
is a factor of 10. The average length of the itemsets in the code tables is about
the same, with resp. 5.9 and 5.7 with and without pruning. However, the
average usage of these itemsets differs more, with averages of resp. 80.7 and
48.2.

4 We wish to thank Blue Martini Software for contributing the KDD Cup 2000 data.
5 The full version of the mammal dataset is available for research purposes upon request

from the Societas Europaea Mammalogica. http://www.european-mammals.org

33

2. Krimp: Mining Itemsets that Compress

Table 2.4: Results of Krimp with and without post-acceptance pruning

Krimp
w/o pruning w/ pruning

Dataset minsup |F| |CT \ I| L% |CT \ I| L%
Accidents 50000 2881487 4046 55.4 467 55.1
Adult 1 58461763 1914 24.9 1303 24.4
Anneal 1 4223999 133 37.5 102 35.3
BMS-pos 100 5711447 14628 82.7 1657 81.8
BMS-wv1 32 1531980297 960 86.6 736 86.2
BMS-wv2 10 4440334 5475 84.4 4585 84.0
Breast 1 9919 35 17.4 30 17.0
Chess (k–k) 319 4603732933 691 30.9 280 27.3
Chess (kr–k) 1 373421 2203 62.9 1684 61.6
Connect–4 1 233142539 4525 11.5 2036 10.9
DNA amp 9 312073710 417 38.6 326 37.9
Heart 1 1922983 108 61.4 79 57.7
Ionosphere 35 225577741 235 63.4 164 61.3
Iris 1 543 13 48.2 13 48.2
Led7 1 15250 194 29.5 152 28.6
Letter 1 580968767 3758 43.3 1780 35.7
Mammals 200 93808243 597 50.4 316 48.4
Mushroom 1 5574930437 689 22.2 442 20.6
Nursery 1 307591 356 45.9 260 45.5
Page blocks 1 63599 56 5.1 53 5.0
Pen digits 1 459191636 2794 48.8 1247 42.3
Pima 1 28845 72 36.3 58 34.8
Pumsbstar 11120 272580786 734 51.0 389 50.9
Retail 4 4106008 7786 98.1 6264 97.7
Tic–tac–toe 1 250985 232 65.0 160 62.8
Waveform 5 465620240 1820 55.6 921 44.7
Wine 1 2276446 76 80.9 63 77.4

Per dataset, the minsup for mining frequent itemsets, and the size
of the resulting candidate set F . For Krimp without and with post-
acceptance pruning enabled, the number of non-singleton elements in
the returned code tables and the attained compression ratios.

34

2.7. Experiments

As post-acceptance pruning provides improved performance, from now on-
ward we employ Krimp with post-acceptance pruning, unless indicated oth-
erwise. Further, due to the differences in code table size, experiments with
pruning typically execute faster than those without pruning.

Next, we examine the development in number of selected itemsets w.r.t. the
number of candidate itemsets. For the Mushroom database, the top graph of
Figure 2.3 shows the size of the candidate set and size of the corresponding code
table for varyingminsup thresholds. While we see that the number of candidate
itemsets grows exponentially, to 5.5 billion for minsup = 1, the number of
selected itemsets stabilises at around 400. This stabilisation is typical for all
datasets, with the actual number being dependent on the characteristics of the
data.

This raises the question whether the total compressed size also stabilises.
In the bottom graph of Figure 2.3, we plot the total compressed size of the
database for the same range of minsup. From the graph it is clear that this is
not the case: the compressed size decreases continuously, it does not stabilise.
Again, this is typical behaviour; especially for sparse data we have recorded
steep descents at low minsup values. As the number of itemsets in the code
table is stable, we thus know that itemsets are being replaced by better ones.
Further, note that the compressed size of the code table is dwarfed by the
compressed size of the database. This is especially the case for large datasets.

Back to the top graph of the figure, we see a linear correlation between the
run time and the number of candidate sets. The correlation factor depends
heavily on the data characteristics; its density, the number of items and the
number of transactions. For this experiment, we observed 200,000 to 400,000
candidates considered per second, the performance being limited by IO.

In the top graph of Figure 2.4 we provide an overview of the differences in
the sizes of the candidate sets and code tables, and in the bottom graph the
run times recorded for these experiments. Those experiments for which the
run time bars are missing finished within one second. The bottom graph shows
that the run times are low.

Letting Krimp consider the largest candidate sets, billions of itemsets, takes
up to a couple of hours. The actual speed (candidates per second) mainly de-
pends on the support of the itemsets (the number of transactions that have to
be covered). The speed at which our current implementation considers candi-
date itemsets typically ramps up to thousands, even hundreds of thousands,
per second.

Stability
Here, we verify the stability of Krimp w.r.t. different candidate sets. First we
investigate whether good results can be attained without the itemsets normally
chosen in the code table. Given the large redundancy in the frequent pattern

35

2. Krimp: Mining Itemsets that Compress

minsup

10
4

10
5

10
6

81
24 1

34
64 43

2
44

4
47

6
50

4
53

6
60

0
64

0
68

4
74

4
86

4
91

2
98

2
10

56
12

48
14

76
17

28
18

70
20

16
23

36
27

04 18
4

19
2

20
4

21
6

23
5

25
6

27
2

28
8

30
0

32
4

34
4

37
6 4858647280889610
8

12
6

13
5

14
4

14
9

16
8 81618242840

Co
m

pr
es

se
d

si
ze

 (b
its

)

L(CT,DB) L(DB|CT) L(CT)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

| | |CT\| time (s)

,
N

um
be

r o
f s

et
s

Ti
m

e
(s

)

Figure 2.3: Running Krimp with post-acceptance pruning on the Mushroom
dataset using 5.5 billion frequent itemsets as candidates (minsup = 1). (top)
Perminsup, the size of the candidate set, |F|, the size of the code table, |CT\I|,
and the runtime in seconds. (bottom) Per minsup, the size in bits of the code
table, the data, and the total compressed size (resp. L(CT), L(D | CT) and
L(D, CT)).

36

2.7. Experiments

1

10

100

1000

10.000

100.000

M
ushroom

Accidents
Adult

Anneal
BM

S-pos
BM

S-w
v1

BM
S-w

v2
Breast
Chess (k-k)
Chess (kr-k)
Connect-4
D

N
A am

p
H

eart

Ionosphere
Iris

Led7

Letter

M
am

m
als

N
ursery

Pageblocks

Pim
a

Pum
sbstar

Retail

Pen digits

Tic-tac-toe
W

aveform
W

ine

N
um

be
r o

f i
te

m
se

ts
Ti

m
e

in
 s

ec
on

ds

1

10.000.000

100.000.000

1E+09

10.000

100.000

1.000.000

10

100

1.000

| | |CT| time

Figure 2.4: The results of Krimp with post-acceptance pruning on the 27
datasets using the minsup thresholds of Table 2.4. The dark coloured bars
show the number of itemsets in the candidate set, |F|, the lighter coloured
bars the number of non-singleton itemsets selected in the code table, |CT \ I|,
and the bottom graph the associated run times.

set, one would expect so.
To this end, we first ran Krimp using candidate set F to obtain CT . Then,

for each X ∈ CS \ I we ran Krimp using the candidate set F \ {X}. In
addition, we also ran Krimp using F \ {X ∈ CS \ I}.

As a code table typically consists of about 100 to 1000 elements, a con-
siderable set of experiments is required per database. Therefore, we use five
of the datasets. The results of these experiments are presented in Table 2.5.
The minute differences in compression ratios show that the performance of
Krimp does not rely on just those specific itemsets in the original code tables.
Excluding all elements from the original code table results in compression ra-
tios up till only .5% worse than normal. This is expected, as in this setting all
structure in the data captured by the original code table has to be described
differently. The results of the individual itemset exclusion experiments, on the
other hand, are virtually equal to the original. In fact, sometimes shorter (bet-
ter) descriptions are found this way: the removed itemsets were in the way of
ones that offer a better description.

Next, we consider excluding far more itemsets as candidates. That is, we
use closed, as opposed to all, frequent itemsets as candidates for Krimp. For

37

2. Krimp: Mining Itemsets that Compress

datasets with little noise the closed frequent pattern set can be much smaller
and faster to mine and process. For the minsup thresholds depicted in Ta-
ble 2.4, we mined both the complete and closed frequent itemset collections,
and used these as candidate sets F for running Krimp. Due to crashes of the
closed frequent itemset miner, we have no results for the Chess (k–k) dataset.
Figure 2.5 shows the comparison between the results of either candidate set
in terms of the relative compression ratio. The differences in performance are
slight, with an average increase in L% of about 1%. The only exception seems
Ionosphere, where a 12% difference is noted. Further, the resulting code tables
are of approximately the same size; the ‘closed’ code tables consist of fewer
itemsets: 10 on average. From these experiments we can conclude that closed
frequent itemsets are a good alternative to be used as input for Krimp, espe-
cially if otherwise too many frequent itemsets are mined.

Table 2.5: Stability of the Krimp given candidate sets with exclusions

L% given candidates
Dataset minsup F F \X F \ CT
Chess (kr–k) 1 61.6 61.7± 0.21 61.6
Mushroom 1 24.7 24.7± 0.01 25.0
Nursery 1 45.5 45.4± 0.36 46.0
Pen digits 50 46.7 46.7± 0.12 47.2
Wine 1 77.4 77.4± 0.26 78.0

Per dataset, the minsup threshold at which frequent itemsets were
mined as candidates F for Krimp. Further, the relative compression
L% for running Krimp with F , the average relative compression at-
tained by excluding single original code table elements from F , and the
relative compression attained by excluding all itemsets normally chosen
from F , i.e. using F \{X ∈ CT | X /∈ I} as candidates for Krimp. For
Mushroom and Pen digits the closed frequent itemset collections were
used as candidates.

Relevance

To evaluate whether Krimp code tables model relevant structure, we employ
swap randomisation [49]. Swap randomisation is the process of randomising
data to obscure the internal dependencies, while preserving the row and column
margins of the data. The idea is that if the true structure of the data is

38

2.7. Experiments
Re

la
tiv

e
co

m
pr

es
si

on
 (L

%
)

M
ushroom

Accidents
Adult
Anneal
BM

S-pos
BM

S-w
v1

BM
S-w

v2
Breast
Chess (kr-k)
Connect-4
D

N
A am

p
H

eart
Ionosphere
Iris

Led7

Letter
M

am
m

als

N
ursery

Pageblocks

Pim
a

Pum
sbstar

Retail

Pen digits

Tic-tac-toe
W

aveform
W

ine

all closed

0

70

80

90

40

50

60

10

20

30

100

Figure 2.5: The results of Krimp with post-acceptance pruning on 26 datasets
using the minsup thresholds of Table 2.4. Per dataset, the upward bars indi-
cated the relative total compressed size (L%). As candidates, F , all (left bars),
and closed (right bars) frequent itemsets were used.

captured, there should be significant differences between the models found in
the original and randomised datasets.

To this end, we compare the total compressed size of the actual data to those
of 1000 swap randomised versions of the data. As this implies a large number
of experiments, we have to restrict ourselves to a small selection of datasets. To
this end, we chose three datasets with very different characteristics: BMS-wv1,
Nursery and Wine. To get reasonable numbers of candidate itemsets (i.e. a
few million) from the randomised data we use minsup thresholds of 1 for the
latter two datasets and 35 for BMS-wv1. We apply as many swaps as there are
1’s in the data.

Figure 2.6 shows the histogram of the total compressed sizes of these 1000
randomisations. The total compressed sizes of the original databases are in-
dicated by arrows. The standard encoded size for these three databases,
L(D, ST), are 1173962 bits, 569042 bits and 14100 bits, respectively.

The graphs show that the original data can be compressed significantly
better than the randomised datasets (p-value of 0). Further quantitative results
are shown in Table 2.6. Besides much better compression, we see that for
Nursery and Wine the code tables induced on the original data contain fewer,
but more specific (i.e. longer) itemsets. For BMS-wv1 the randomised data

39

2. Krimp: Mining Itemsets that Compress

Table 2.6: Swap randomisation experiments

Original data Swap randomised

Dataset |CT \ I| |X| L% |CT \ I| |X| L%
BMS-wv1 718 2.8 86.7 277.9± 7.3 2.7± 0.0 97.8± 0.1
Nursery 260 5.0 45.5 849.2± 19.9 4.0± 0.0 77.5± 0.1
Wine 67 3.8 77.4 76.8± 3.4 3.1± 0.1 93.1± 0.4

Results of 1000 independent swap randomisation experiments per
dataset. As many swaps were applied as there are 1’s in the data.
By |X| we denote the average cardinality of itemsets X ∈ CT \ I.
The results for the swap randomisations are averaged over the 1000 ex-
periments per dataset. As candidates for Krimp with post-acceptance
pruning we used all frequent itemsets,minsup = 1, except for BMS-wv1
for which we set minsup = 35.

is virtually incompressible with Krimp (L% ≈ 98%), and as such much fewer
itemsets are selected.

Classification
As an independent evaluation of the quality of the itemsets picked by Krimp,
we compare the performance of the Krimp classifier (detailed in Section 2.5)
to the performance of a wide range of well-known classifiers. Our hypothesis is
that, if the code table-based classifier performs on-par, Krimp selects itemsets
that are characteristic for the data.

We use the same minsup thresholds as we used for the compression experi-
ments, listed in Table 2.4. Although the databases are now split on class before
they are compressed by Krimp, these thresholds still provide large numbers of
candidate itemsets and result in code tables that compress well.

It is not always beneficial to use the code tables obtained for the lowest
minsup, as class sizes are often unbalanced or more structure is present in
one class than in another. Also, over-fitting may occur for very low values
of minsup. Therefore, we store code tables at fixed support intervals during
the pattern selection process. During classification, we need to select one code
table for each class. To this end, we ‘pair’ the code tables using two methods:
absolute and relative. In absolute pairing, code tables that have been generated
at the same support levels are matched. Relative pairing matches code tables
of the same relative support between 100% and 1% of the maximum support
value (per class, equals the number of transactions in a class). We evaluate all
pairings and choose that one that maximises accuracy.

40

2.7. Experiments

1.1 1.11 1.3 1.31 1.32 1.33

x 10
4

N
um

be
r o

f r
an

do
m

si
ed

 d
at

as
et

s

Total compressed size (bits)

0

20

40

60

80

100

120

Original
data

2.59 2.6 4.39 4.4 4.41 4.42

x 10
5

0

20

40

60

80

100

120

N
um

be
r o

f r
an

do
m

si
ed

 d
at

as
et

s

Total compressed size (bits)

Original
data

1.018 1.02 1.144 1.146 1.148 1.15

x 10
6

0

20

40

60

80

100

120

N
um

be
r o

f r
an

do
m

si
ed

 d
at

as
et

s

Total compressed size (bits)

Original
data

Figure 2.6: Histograms of the total compressed sizes of 1000 swap randomised
BMS-wv1 (top), Nursery (middle) and Wine (bottom) datasets, using all fre-
quent itemsets as candidates for Krimp with post-acceptance pruning. Total
compressed sizes of the original datasets are indicated by the arrows. Note the
jumps in compressed size on the x-axes.

41

2. Krimp: Mining Itemsets that Compress

Table 2.7: Results of Krimp classification, for all/closed frequent itemsets and
without/with pruning

Krimp
Candidates w/o pruning w/ pruning
all 84.3± 14.2 84.5± 13.1
closed 84.0± 13.9 83.7± 14.2

For each combination of candidates and pruning, the average accuracy
(%) over the 19 datasets from Table 2.8 is given. Standard deviation
is high as a result of the diverse range of datasets used.

All results reported in this section have been obtained using 10-fold cross-
validation. As performance measure we use accuracy, the percentage of true
positives on the test data. We compare to results obtained with 6 state-of-the-
art classifiers. These scores are taken from [16, 128, 137], which all used the
same discretised datasets. Missing scores for C4.5, Naïve Bayes and SVM have
been acquired using Weka [133]. Note that, in contrast to others, we use the
sparse version of Connect–4 described in Section 2.7.

Before we compare the Krimp classification performance to other methods,
we verify whether there is a qualitative difference between using all or only
closed frequent itemsets as candidates and using post-acceptance pruning or
not. Table 2.7 shows that the variation in average accuracy is very small,
but using all frequent itemsets as candidates with pruning gives the highest
accuracy, making it an obvious choice for inspection of more detailed results in
the rest of this subsection.

Classification results with all frequent itemsets as candidates and post-
acceptance pruning are presented in Table 2.8, together with accuracies ob-
tained with 6 competitive classifiers. Baseline accuracy is the (relative) size of
the largest class in a dataset. For about half of the datasets, absolute pairing
gives the maximum score, relative pairing gives the best results for the other
cases. As expected, relative pairing performs well especially for datasets with
small classes or unbalanced class sizes. In general though, the difference in
maximum accuracy between the two types of pairings is very small, i.e. < 1%.
For a few datasets, the difference is more notable, 2− 10%.

Looking at the scores, we observe that performance on most datasets is very
similar for most algorithms. For Pima, for example, all accuracies are within
a very small range. Because of this, it is important to note that performance
may vary up to a few percent depending on the (random) partitioning used for
cross-validation, especially for datasets having smaller classes. Since we took

42

2.7. Experiments

Table 2.8: Results of Krimp classification, compared to 6 state-of-the-art clas-
sifiers

Dataset base Krimp NB C4.5 CBA HRM iCAEP SVM

Adult 76.1 84.3 83.8 85.4 75.2 81.9 80.9 84.1
Anneal 76.2 96.6 97.0 90.4 98.1 95.1 97.4
Breast 65.5 94.1 97.1 95.4 95.3 97.4 69.6
Chess (k–k) 52.2 90.0 87.9 99.5 98.1 94.6 95.4
Chess (kr–k) 16.2 57.9 36.1 56.6 44.9 29.8
Connect–4 65.8 69.4 72.1 81.0 68.1 69.9 72.5
Heart 54.1 61.7 83.5 78.4 81.9 80.3 84.2
Ionosphere 64.1 91.0 89.5 92.0 92.1 90.6 88.6
Iris 33.3 96.0 93.3 94.7 92.9 94.7 93.3 96.0
Led7 11.0 75.3 74.0 71.5 71.9 74.6 73.8
Letter 4.1 70.9 64.1 87.9 76.8 67.8
Mushroom 51.8 100 99.7 100 99.9 99.8 99.7
Nursery 33.3 92.3 90.3 97.1 88.8 92.8 84.7 91.4
Page blocks 89.8 92.6 90.9 92.4 89.0 91.6 91.2
Pen digits 10.4 95.0 85.8 96.6 96.2 93.2
Pima 65.1 72.7 74.7 72.5 73.1 73.0 72.3 77.3
Tic–tac–toe 65.3 88.7 70.2 86.3 100 81.0 92.1 98.3
Waveform 33.9 77.1 80.8 70.4 75.3 80.5 81.7 83.2
Wine 39.9 100 89.9 87.9 91.6 63.0 98.9 98.3

For each dataset, baseline accuracy and accuracy (%) obtained with
Krimp classification is given, as well as accuracies obtained with 6 other
classifiers are given. We use HRM as abbreviation for HARMONY. The
highest accuracy per dataset is displayed in boldface. For Krimp with
post-acceptance pruning, per class, frequent itemsets mined at thresh-
olds found in Table 2.4 were used as candidates. All results are 10-fold
cross-validated.

43

2. Krimp: Mining Itemsets that Compress

Table 2.9: Confusion matrices

Mushroom
1 2

1 4208 0
2 0 3916

Iris
1 2 3

1 47 2 0
2 2 48 1
3 1 0 40

Heart
1 2 3 4 5

1 142 22 9 6 2
2 17 23 8 9 5
3 3 2 12 4 2
4 0 7 5 10 4
5 2 1 2 6 0

The values denote how many transactions with class column are clas-
sified as class row

the accuracies from different sources, we cannot conclude that a particular
classifier is better on a certain dataset if the difference is not larger than 2-3%.

The Krimp classifier scores 6 wins, indicated in boldface, which is only
beaten by C4.5 with 7 wins. Additionally, the achieved accuracy is close to the
winning score in 5 cases, not so good for Connect–4, Heart and Tic–tac–toe,
and average for the remaining 5 datasets.

Compared to Naïve Bayes, to which our method is closely related, we ob-
serve that the obtained scores are indeed quite similar. On average, however,
Krimp achieves 2.4% higher accuracy, with 84.5% for Krimp and 82.1% for
Naïve Bayes. The average accuracy for SVM is 83.8%, while C4.5 outper-
forms all with 86.3%. We also looked at the performance of FOIL, PRM and
CPAR [107, 136] reported in [34]. These classifiers perform sub-par in com-
parison to those in Table 2.8. A comparison to LB and/or LB-chi2 [93] is
problematic, as only few accuracies are available for the (large) datasets we
use and for those that are available, the majority of the LB results is based on
train/test, not 10-fold cross-validated.

To get more insight in the classification results, confusion matrices for 3
datasets are given in Table 2.9. The confusion matrix for Heart shows us why
the Krimp classifier is unable to perform well on this dataset: it contains 4 very
small classes. For such small databases, the size of the code table is dominant,
precluding the discovery of the important frequent itemsets. This is obviously
the case for some Heart classes. If we consider Mushroom and Iris, then the
bigger the classes, the better the results. In other words, if the classes are big
enough, the Krimp classifier performs very well.

We can zoom in even further to show how the classification principle works
in practice. Figure 2.7 illustrates the effect of coding a transaction with the
‘wrong’ code. The rounded boxes in this figure visualise the itemsets that make
up the cover of the transaction. Each of the itemsets is linked to its code by

44

2.7. Experiments

the dashed line. The widths of the black and white encodings represent the
actual computed code lengths. From this figure, it is clear that code tables can
be used to both characterise and recognise data distributions.

Order
Next, we investigate the order heuristics of the Krimp algorithm. Both the
standard cover order and standard candidate order are rationally made choices,
but choices nevertheless. Here, we consider a number of alternatives for either
and evaluate the quality of possible combinations through compression ratios
and classification accuracies. The outcome of these experiments are shown in
Table 2.10. Before we cover these results, we discuss the orders. As before, ↓
indicates the property to be sorted descending, and ↑ ascending.

For the Standard Cover Algorithm, we experimented with the following
orders of the coding set.

• Standard Cover Order:

|X| ↓ suppD(X) ↓ lexicographically ↑

• Entry:
index of X in F ↓

• Area ascending:

|X| × suppD(X) ↑ index of X in F ↓

16 19 24 15 29 1 25 0 12 3613 26 62

12 1316 26 36 0 1 15 19 24 25 29 62

0 16 19 20 24 6 7 36 1 25 3 4 29

0 1 3 4 6 7 16 19 20 24 25 29 36

CT
2

Transaction 2Transaction 1

CT
1

Figure 2.7: Wine; two transactions from class 1, D1, encoded by the code tables
for class 1, CT1 (top), and class 2, CT2 (bottom)

45

2. Krimp: Mining Itemsets that Compress

We also consider the Random cover order, where new itemsets are entered
at a random position in the code table. For all the above orders, we sort the
singleton itemsets below itemsets of longer length. In Table 2.10 we refer to
these orders, respectively, as Standard, Entry, Area and Random. We further
experimented with a number of alternatives of the above, but the measured
performance did not warrant their inclusion in the overall comparison.

As for the lineup in which the itemsets are considered by the Krimp algo-
rithm, the candidate order, we experimented with the following options.

• Standard Candidate Order:

suppD(X) ↓ |X| ↓ lexicographically ↑

• Standard, but length ascending:

suppD(X) ↓ |X| ↑ lexicographically ↑

• Length ascending, support descending:

|X| ↑ suppD(X) ↓ lexicographically ↑

• Area descending, support descending:

|X| × suppD(X) ↓ suppD(X) ↓ lexicographically ↑

A Random candidate order is also considered, which is simply a random
permutation of the candidate set. In Table 2.10 we refer to these orders as,
respectively, Standard, Standard’, Length, Area and Random. Again, we con-
sidered a number of variants of the above, for none of which the performance
was good enough to be included here.

For all 20 combinations of the above cover and candidate orders we ran
compression experiments on 16 datasets and classification experiments for 11
datasets. As candidate itemsets, we ran experiments with both the complete
and closed frequent itemset collections. Due to the amount of experiments
required by this evaluation we only used single samples for the random orders.
Classification scores are 10-fold cross-validated, as usual. Per dataset, the score
of the best performing pairing (absolute or relative) was chosen. The details
on which datasets and what minsup thresholds were used are displayed in
Table 2.11.

The results of these experiments are depicted in Table 2.10. Shown are, per
combination of orders, the total compression ratio L% and the classification
accuracy, both of which are averaged over all databases and both all and closed
frequent itemsets as candidate sets.

46

2.7. Experiments

Between the orders, we measure considerable differences in compression ra-
tio, up to 15%. For the candidate orders, the standard cover order is the best
choice. The difference between the two variants Standard and Standard’, is
negligible, while the other options perform significantly worse for cover orders
Standard and Entry. The same can be said for classification. We note that,
although intuitively it seems a good choice, all variants of the area-descending
order we further tested perform equally to each other, but sub-par when com-
pared to the other orders.

For the standard cover algorithm, order-of-entry performs best, with the
standard cover order second at a slight margin of half a percent. Covering in
order of area shows outright bad performance, loosing even to random. As
order-of-entry shows the best compression ratios, it is preferred from a MDL
point of view. However, the standard order has the practical benefit of being
(much) faster in practice. As it does not always insert new elements at the ‘top’
of the code table, partially covered transactions can be cached, speeding up the
cover process significantly. The differences between the two, both in terms of
compression and classification accuracies, are small, warranting the choice of
the ‘suboptimal’ standard cover order for the practical reason of speed.

The scores for the random orders show that the greedy covering and MDL-
based selection are most important for attaining good compression ratios. With

Table 2.10: Evaluation of candidate and cover orders

Cover order
Standard Entry Area Random

F ↓ L% acc. L% acc. L% acc. L% acc.

Standard 44.2 88.6 43.7 88.7 51.1 88.1 49.5 88.1
Standard’ 44.2 88.5 43.7 88.8 51.6 88.1 49.5 88.3
Length 45.2 88.0 43.9 87.9 55.4 87.1 49.1 78.8
Area 48.6 88.0 64.5 88.4 64.4 88.1 65.0 88.0
Random 49.4 86.8 51.2 87.0 57.5 86.8 50.8 87.0

Results for 20 combinations of candidate and cover orders for
Krimp with post-acceptance pruning. Shown are average relative
Krimp compression, L%, and average classification accuracy (%) on
a number of datasets. Results for compression and classification are
averaged over 16 resp. 11 datasets. Table 2.11 shows which datasets
were used and at what minsup thresholds the candidate sets, F , were
mined for these experiments.

47

2. Krimp: Mining Itemsets that Compress

either the candidate and/or cover order being random, Krimp still typically
attains ratios of 50% and average accuracies are far above the baseline of 47.7%.
This is due to the redundancy in the candidate sets and the cover order be-
ing fixed, even when the insertion position for a candidate is random. This
allows the selection process to still pick sets of high-quality itemsets, albeit
sub-optimal.

Table 2.11: Datasets and settings for the candidate and cover order experiments

minsup Used for
Dataset all closed Compression Classification
Adult 20 1 � �
Anneal 1 1 � �
Breast 1 1 � �
Chess (kr–k) 1 1 �
DNA amplification 10 1 �
Ionosphere 50 1 � �
Iris 1 1 � �
Led7 1 1 � �
Letter recognition 50 20 �
Mammals 545 545 �
Mushroom 1 � �
Nursery 1 1 �
Pen digits 20 1 � �
Pima 1 1 � �
Waveform 50 5 � �
Wine 1 1 � �

Details for which datasets and which settings were used for the experi-
ments for Table 2.10. Per dataset, shown are the minsup thresholds at
which candidate sets, F , were mined for all and closed frequent item-
sets. Ticks indicate which datasets were used for what experiments.
In total, tens of thousands of individual Krimp compression runs were
required for these order experiments.

48

2.8. Discussion

2.8 Discussion

The experimental evaluation shows that Krimp provides a practical solution to
the well-known explosion in pattern mining. It reduces the highly redundant
frequent itemset collections with many orders of magnitude to sets of only
hundreds of high-quality itemsets. High compression ratios indicate that these
itemsets are characteristic for the data and non-redundant in-between. Swap
randomisation experiments show that the selections model relevant structure,
and exclusion of itemsets shows that the method is stable with regard to noise.
The quality of the itemsets is independently validated through classification,
for which we introduced theory to classify by code-table based compression.
While the patterns are chosen to compress well, the Krimp classifier performs
on par with state-of-the-art classifiers.

Krimp is a heuristic algorithm, as is usual with MDL: the search space
is by far too large to consider fully, especially since it is unstructured. The
empirical evaluation of the choices made in the design of the algorithm show
that the standard candidate order is the best, both from a compression and a
classification perspective. The standard order in which itemsets are considered
for covering a transaction is near-optimal; the order-of-entry approach, where
new itemsets are used maximally, achieves slightly better compression ratios
and classification accuracies. However, the standard order allows for efficient
caching, speeding up the cover process considerably while hardly giving in on
quality. Post-acceptance pruning is shown to improve the results: fewer item-
sets are selected, providing better compression ratios and higher classification
accuracies. Although pruning requires itemsets in the code table to be recon-
sidered regularly, its net result is a speed-up as code tables are kept smaller and
the cover process thus needs to consider fewer itemsets to cover a transaction.

The timings reported in this study show that compression is not only a
good, but also a realistic approach, even for large databases and huge candi-
date collections; the single-threaded implementation already considers up to
hundreds of thousands of itemsets per second. While highly efficient frequent
itemset miners were used, we observed that mining the candidates sometimes
takes (much) longer than the actual Krimp selection. Also, the algorithm can
be easily parallelised, both in terms of covering parts of the database and of
checking the candidate itemsets. The implementation6 we used for the ex-
periments in this chapter does the latter, as the performance of the former
deteriorates rapidly for candidate itemsets with low support.

In general, the larger the candidate set, the better the compression ratio.
The total compressed size decreases continuously, even for low minsup values,
i.e. it never converges. Hence, F should be mined at aminsup threshold as low

6Our implementation of Krimp is freely available for research purposes from
http://www.cs.uu.nl/groups/ADA/krimp/

49

2. Krimp: Mining Itemsets that Compress

as possible. Given a suited frequent itemset miner, experiments could be done
iteratively, continuing from the so-far optimal code table and corresponding
previous minsup. For many datasets, it is computationally feasible to set
minsup = 1.

When mining all frequent itemsets for a low minsup is infeasible, using
closed frequent itemsets as candidate set is a good alternative instead. For
most datasets, results obtained with closed are almost as good as with all
frequent itemsets, while for some datasets this makes the candidate set much
smaller and thus computationally attractive.

Krimp can be regarded a parameter-free algorithm and used as such in
practice. The candidate set is a parameter, but since larger candidate sets give
better results this can always be set to all frequent itemsets with minsup = 1.
Only when this default candidate set turns out to be too large to handle for the
available implementation and hardware, this needs to be tuned. Additionally,
using post-acceptance pruning always improves the results and even results in
a speed-up in computation time, so there is no reason not to use this.

Although code tables are made to just compress well, it turns out they can
easily be used for classification. Because other classifiers have been designed
with classification in mind, we expected these to outperform the Krimp classi-
fier. We have shown this is not the case: Krimp performs on par with the best
classifiers available. We draw two conclusions from this observation. Firstly,
Krimp selects itemsets that are very characteristic for the data. Secondly, the
compression-based classification scheme works very well.

While this chapter covers a large body of work done, there remains plenty
of future work left to do. For example, Krimp could be further improved by
directly generating candidate itemsets from the data and its current cover. Or,
all frequent itemsets could be generated on-the-fly from a closed candidate set.
Both extensions would address the problems that occur with extremely large
candidate sets, i.e. crashing itemset miners and IO being the bottleneck instead
of CPU time.

2.9 Conclusions

In this chapter we have shown how MDL gives a dramatic reduction in the
number of frequent itemsets that one needs to consider. For twenty-seven data
sets, the reductions reached by the Krimp algorithm ranges up to seven orders
of magnitude; only hundreds of itemsets are required to succinctly describe the
data. The algorithm shows a high stability w.r.t. different candidate sets. It
is parameter-free for all practical purposes; for the best result, use as large as
possible candidate sets and enable pruning.

Moreover, by designing a simple classifier we have shown that Krimp picks
itemsets that matter. This is all the more telling since the selection of code

50

2.9. Conclusions

table elements does not take predictions into account. The small sets that
are selected characterise the database accurately, as is also indicated by small
compressed sizes and swap randomisation experiments.

In this chapter, we verified the heuristic choices we made for the Krimp al-
gorithm in [113]. We extensively evaluated different possible orders for both
the candidate set and code table. The outcome is that the standard orders
are very good: no combination of orders was found that performs significantly
better, while the standard orders offer good opportunities for optimisation.

Because we set the frequent pattern explosion, the original problem, in a
wide context but discussed only frequent itemsets, the reader might wonder:
does this also work for other types of patterns? The answer is affirmative, in [11]
we have shown that our MDL-based approach also works for pattern-types such
as frequent episodes for sequence data and frequent subgraphs for graph data.
In [74, 75], we extended the approach to multi-relational databases, i.e. to
select patterns over multiple tables. Also, the LESS algorithm [60] (see also
Section 2.6) introduces an extension of the encoding such that it can be used
to select more generic patterns, e.g. low-entropy sets.

Like detailed in [42], there are many data mining tasks for which compres-
sion, and thus the foundations presented in this chapter, can be used. E.g. we
have independently shown that compression (or, more specifically, Krimp) can
be successfully employed for characterising differences [124], generating data
and preserving privacy [125], and identifying the components in a database [79].
The next chapters will detail these and further approaches.

51

CHAPTER 3

Characterising the Difference

Characterising the differences between two databases is an often occurring
problem in Data Mining. Detection of change over time is a prime example,
comparing databases from two branches is another one. The key problem is to
discover the patterns that describe the difference. Emerging patterns provide
only a partial answer to this question.

In the previous chapter, we showed that the data distribution can be cap-
tured in a pattern-based model using compression. Here, we extend this ap-
proach to define a generic dissimilarity measure on databases. Moreover, we
show that this approach can identify those patterns that characterise the differ-
ences between two distributions. Experimental results show that our method
provides a well-founded way to independently measure database dissimilarity
that allows for thorough inspection of the actual differences. This illustrates
the use of our approach in real world data mining.1

1 This work was originally published as [124]:
Vreeken, J., van Leeuwen, M., Siebes, A. (2007). Characterising the Difference. In Proceed-
ings of the KDD’07. pages 765-774. ACM.

53

3. Characterising the Difference

3.1 Introduction

Comparing databases to find and explain differences is a frequent task in many
organisations. The two databases can, e.g. be from different branches of the
same organisations, such as sales records from different stores of a chain or
the ‘same’ database at different points in time. In the first case, the goal of
the analysis could be to understand why one store has a much higher turnover
than the other. In the second case, the goal of the analysis could be to detect
changes or drift over time.

The problem of this kind of ‘difference detection’ has received ample atten-
tion, both in the database and in the data mining community. In the database
community, OLAP [32] is the prime example. Using roll-up and drill-down
operations, a user can (manually) investigate, e.g. the difference in sales be-
tween the two stores. Emerging pattern mining [38] is a good example from
the data mining community. It discovers those patterns whose support increase
significantly from one database to the other.

Emerging patterns, though, are often redundant, giving many similar pat-
terns. Also, the growth rate that determines the minimal increase in support
has a large impact on the number of resulting patterns. Lower growth rates
give large amounts of patterns, of which only some are useful. To discover
only ‘interesting’ differences would require the data miner to test with multiple
growth rate settings and, manually, trace what setting gives the most useful
results and filter those from the complete set of emerging patterns.

In this chapter we propose a new approach to ‘difference detection’ that
identifies those patterns that characterise the differences between the two data-
bases. In fact, the approach just as easily identifies the characteristic differences
between multiple databases. The approach extends our earlier work employing
Minimum Description Length (MDL) for frequent pattern mining. As in most
of the chapters of this thesis, we here restrict ourselves to frequent itemset
mining, although the methodology easily extends to other kinds of patterns
and data types, see [11].

In the previous chapter we attacked the well-known frequent itemset explo-
sion at low support thresholds using MDL. The MDL philosophy is that the
selected subset gives the best approximation of the underlying data distribu-
tion. We independently verified this claim by using the compression schemes
for classification. Say, we have two classes, C1 and C2. Select the MDL-best set
F1 of frequent itemsets for the sub-database for class C1 and F2 for class C2.
As explained above, this gives us two compression algorithms, configured by
code table CT1 based on F1 and code table CT2 based on F2. A new, unseen,
example t can now be compressed by both CT1 and CT2. In the chapter we
argued that the Bayes optimal choice is to assign t to the class whose compres-
sor compresses t best. This simple classification algorithm scores on-par with
state-of-the-art classification algorithms; please refer to Chapter 2 for details.

54

3.2. Preliminaries

The approach towards difference detection introduced in this chapter is
again based on compression. First, we use compression to define a dissimilar-
ity measure on databases. Then we introduce three ways to characterise the
differences between two (dis)similar databases.

Let D1 and D2 be the two databases, with transactions concerning the same
sets of items, of which we need to analyse the differences. In Section 3.3, we
first consider the difference in compressed length for the transactions in D1
when compressed by the MDL-compression schemes. The MDL-principle as
well as our results in classification imply that the compression scheme induced
from D2 should in general do worse than the scheme induced from D1. This is
verified by some simple experiments.

Next, we aggregate these differences per transaction by summing over all
transactions in D1 and normalising this sum by the optimal code length for D1.
This aggregation measures how different a database is from D1. This is verified
by experiments that show the correlation between this similarity measure and
the confusion matrix of our classification algorithm briefly introduced above
and in Section 3.2. Finally, this simple measure is turned into a dissimilarity
measure for any pair of databases by taking the maximum of how different D1
is from D2 and vice versa. Again, the MDL-principle implies that this is a
dissimilarity measure. Experiments verify this claim by showing the correla-
tion between this dissimilarity measure and the accuracy of our classification
algorithm.

The result of Section 3.3 is a dissimilarity measure for a pair of databases,
based on code tables. If the dissimilarity is small, the two databases are more
or less the same and a further analysis of the differences will not show anything
interesting. The topic of Section 3.4 is on how to proceed if the dissimilarity is
large. In that section, we introduce three ways to characterise these differences.
The first approach focuses on the usage-patterns of the code table elements,
while the second focuses on how (sets of) transactions are compressed by the
two different schemes. The third and last approach focuses on differences in
the code tables themselves. All three approaches highlight complementary,
characteristic, differences between the two databases.

In Section 3.5 we discuss related work and describe the differences with our
work. We round up with conclusions and future research in Section 3.6.

3.2 Preliminaries

Foundation of all data discussed in this chapter is a set of items I, e.g. the items
for sale in a shop. A transaction t ∈ P(I) is a set of items, e.g. representing
the items a client bought at that store. A database D over I is a bag of
transactions, e.g. the different sale transactions on a given day. An itemset
X ⊆ I occurs in a transaction t ∈ D iff X ⊆ t. The support of X in D is the

55

3. Characterising the Difference

number of transactions in the database in which X occurs.
In this work we build on the Krimp compressor and classifier introduced in

Chapter 2. For details, please refer to that chapter, or see [123].
During the classification experiments, we made some interesting observa-

tions in the distributions of the code lengths (not shown previously). Figure 3.1
shows the encoded lengths for transactions of a single class, encoded by code
tables constructed for each of the three classes. Not only gives the code table
constructed for these transactions shorter encodings, the standard deviation is
also much smaller (compare the histogram on the left to the other two). This
means that a better fit of the code table to the distribution of the compressed
data results in a smaller standard deviation.

Experimental setup
Although a lot of time series data is being gathered for analysis, no good
benchmark datasets with this type of data currently exist. We therefore decided
to use a selection from the UCI repository [33], which has been commonly used
for emerging patterns [38] and related topics before.

As these are all datasets containing multiple classes, we look at the differ-
ences between classes. Hence, we split each dataset on classlabel C and remove
this label from each transaction, resulting in a database Di per class Ci. A
code table induced from Di using Krimp is written as CTi.

For many steps in Sections 3.3 and 3.4, we show results obtained with the
datasets Heart and Wine because of their properties: they are interesting be-
cause they consist of more than 2 classes, but don’t have too many classes.
Please note this selection is only for purpose of presentation; results we ob-
tained with other (larger) datasets are similar. In fact, Krimp is better at
approximating data distributions of larger databases, providing more reliable
results.

Characteristics of all datasets used are summarised in Table 3.8, together
with the minimum support levels we use for mining the frequent itemsets that
function as candidates for Krimp. All experiments in this chapter are done
with all frequent itemsets.

3.3 Database Dissimilarity

In this section, we introduce a dissimilarity measure for transaction databases.
This measure indicates whether or not it is worthwhile to analyse the differ-
ences between two such databases. If the dissimilarity is low, the differences
between the two databases are small. If the measure is high, it is worthwhile
to investigate the differences. Rather than defining the similarity measure up-
front followed by a discussion and illustration of its properties, we ‘develop’ the

56

3.3. Database Dissimilarity

Code lengths (bits)

0

20

40

60

0 10 20 30 40 50 60 70 80 90 100

tr

an
sa

ct
io

n
s

CT1

Code lengths (bits)

0

20

40

60

0 10 20 30 40 50 60 70 80 90 100

CT2

tr

an
sa

ct
io

n
s

0

20

40

60

Code lengths (bits)

0 10 20 30 40 50 60 70 80 90 100

CT3

tr

an
sa

ct
io

n
s

Figure 3.1: Heart; encoded transaction lengths for all transactions belonging to
one class (D1), encoded with the code tables constructed for each of the three
classes (top to bottom: CT1, CT2, CT3).

57

3. Characterising the Difference

measure in a few steps as that allows us to discuss the intuition that underlies
the definition far easier.

Differences in code lengths
The MDL principle implies that the optimal compressor induced from a database
D1 will generally provide shorter encodings for its transactions than the opti-
mal compressor induced from another database D2. Our earlier experiments
on classification verify that this is also true for the code table compressors
Krimp discovers heuristically; see Section 3.2.

More in particular, denote by Hi the optimal compressor induced from
database Di and let t be a transaction in D1. Then, the MDL principle implies
that:

|H1(t)−H2(t)|

• is small if t is equally likely generated by the underlying distributions of
D1 and D2

• is large if t is more likely generated by the distribution underlying one
database than that it is generated by the distribution underlying the
other.

In fact the MDL principle implies that if the code length differences are
large (the second case), then on average the smallest code length will be H1(t).
Our classification results suggest that something similar should hold for the
code table compressors discovered by Krimp. In other words, we expect that

CT2(t)− CT1(t)

measures how characteristic t is for D1. That is, we expect that this difference
is most often positive and large for those transactions that are characteristic
for D1.

In Figures 3.2 and 3.3 code length differences are shown for two datasets,
respectively for transactions of the Wine1 and Heart1 databases. As we ex-
pected, virtually all code length differences are positive. This means that in
practice the native code table does indeed provide the shortest encoding.

In the case of the Wine1 database depicted in Figure 3.2, we see a whopping
average difference of 45bits per transaction. The shapes of the two histograms
also show a nice clustering of the differences between the encoded lengths. No
negative differences occur, each single transaction is compressed better by its
native code table. This confirms that MDL creates code tables that are truly
specific for the data.

We see the same general effect with Heart1 in Figure 3.3, as again the peaks
of the distribution lay within safe distance from the origin. From the histograms

58

3.3. Database Dissimilarity

Code length di�erences (bits)

0

6

12

18

24

0 10 20 30 40 50 60 70 80

tr

an
sa

ct
io

ns

CT3 - CT1

Code length di�erences (bits)

0

6

12

18

24

0 10 20 30 40 50 60 70 80

tr

an
sa

ct
io

ns

CT2 - CT1

Figure 3.2: Wine; code length difference histograms for transactions in D1:
encoded length differences between CT2 and CT1 (left) and between CT3 and
CT1 (right).

-10

Code length differences (bits)

0

20

40

60

0 10 20 30 40 50 60 70 80

s
n

oitcas
nart #

CT3 - CT1

-10

Code length differences (bits)

0

20

40

60

0 10 20 30 40 50 60 70 80

s
noitcas

nar t #

CT2 - CT1

Figure 3.3: Heart; code length difference histograms for transactions in D1:
encoded length differences between CT2 and CT1 (left) and between CT3 and
CT1 (right).

there is little doubt that code tables CT2 and CT3 are encoding data from a
different distribution than they have been induced from. More importantly,
comparing these diagrams unambiguously shows that it is possible to use the
differences in encoded lengths to measure the amount of change between data.
For example, as the differences on the left histogram are clearly smaller than
in the situation on the right, this seems to imply that Heart classes 1 and 2
are more alike than classes 1 and 3. How to investigate this hypothesis further
will be discussed in the next section. First we continue the development of our
dissimilarity measure.

59

3. Characterising the Difference

Aggregating code length differences
In the previous subsection we have seen that the histograms of code length
differences give good insight in the differences between two databases. The
next logical step towards the definition of a dissimilarity measure is to aggregate
these differences over the database. That is, to sum the individual code length
differences over the complete database.

Straightforward aggregation, however, might give misleading results for two
reasons:

• code length differences can be negative, so even if D1 and D2 are rather
different, the aggregated total might be small.

• if D1 is a large database, the aggregated total might be large even if D2
is very similar to D1.

As already mentioned in the previous subsection, the MDL principle implies
that for the MDL-optimal compressors H1 and H2, the expected average value
of H2(t) − H1(t) is positive. In other words, negative code length differences
will be relatively rare and won’t unduly influence the aggregated sum.

Our results in classification and, more importantly, the results of the pre-
vious subsection indicate that the same observation holds for the code table
compressors CT1 and CT2 induced by Krimp. Clearly, only experiments can
verify this claim.

The second problem indicated above is, however, already a problem for
the MDL-optimal compressors H1 and H2. For, the expected value of the
sum of the code length differences is simply the number of transactions times
the expected average code length difference. Since the latter number is positive
according to the MDL principle, the expected value of the sum depends linearly
on the number of transactions on the database.

Clearly, the ‘native’ encoded size of the database, CT1(D1), also depends on
the size of the database. Therefore, we choose to counterbalance this problem
by dividing the sum of code length differences by this size. Doing this, we end
up with the Aggregated Code Length Difference:

ACLD(D1, CT2) = CT2(D1)− CT1(D1)
CT1(D1)

Note that ACLD is an asymmetric measure: it measures how different D2 is
from D1, not vice versa! While one would expect both to be in the same
ballpark, this is by no means given. The asymmetry is further addressed in
the next subsection. To clearly indicate the asymmetry, the parameters are
asymmetric: the first parameter is a database, while the second is a code table.

Given this definition, we can now verify experimentally whether it works or
not. That is, do greater dissimilarities imply larger differences and vice versa?

60

3.3. Database Dissimilarity

Table 3.1: Heart; aggregated code length differences.

D1 D2 D3 D4 D5

CT1 0.00 0.36 0.71 0.88 1.58
CT2 0.85 0.00 0.60 0.65 1.03
CT3 1.65 0.78 0.00 0.60 1.25
CT4 1.85 0.65 0.61 0.00 1.09
CT5 2.18 1.07 0.72 0.87 0.00

Table 3.2: Wine; aggregated code length differences.

D1 D2 D3

CT1 0.00 1.27 1.32
CT2 1.13 0.00 1.73
CT3 1.14 1.68 0.00

In Table 3.1 we read the aggregated code length differences for all possible
combinations of code tables and class databases for the Heart dataset. It is
immediately clear there are distinct differences between the class distributions,
as measurements of 1.00 imply code lengths averaging twice as long (or, 100%
more bits required) as that of the actual class. We also notice that while the
data distributions of databases 1 and 5 are quite distinct, the lower measure-
ments between the other three classes indicate that their distributions are more
alike.

For the Wine database the class distributions are more adrift than those in
the Heart database, for all cross-compressions result in encodings more than
twice as long as the native ones. This is completely in line with what we have
seen before in Figure 3.2, in which we showed there is no uncertainty in keeping
transactions of the Wine databases apart based on encoded lengths.

If this technique truly quantifies the likeliness of the distributions belonging
to some data, intuition tells us there has to be a close relation with the classifi-
cation quality based on encoded transaction lengths. We can easily check this
by comparing the aggregated code length differences with the confusion matri-
ces for these databases. We therefore ran 10-fold cross validated classification
experiments for these databases, as we did in the previous chapter.

The confusion matrix for the Heart database, in Table 3.3, clearly shows
the intuition to be correct, as the number of misclassified instances drops com-
pletely according to ACLD. While 24 transactions of class 2 are misclassified as
belonging to class 1, we see in Table 3.1 that these two classes are measured as

61

3. Characterising the Difference

Table 3.3: Heart: classification confusion matrix.

Classified Class
as 1 2 3 4 5
1 137 24 9 6 3
2 12 11 11 7 5
3 6 8 7 8 1
4 8 10 7 9 4
5 1 2 2 5 0

Table 3.4: Wine: classification confusion matrix.

Classified Class
as 1 2 3
1 65 3 6
2 5 55 0
3 1 1 42

rather similar. In fact, if we sort the measurements in Table 3.1 per class, we
find the same order as when we sort Table 3.3 on the number of misclassifica-
tions. The measured difference thus directly relates to the ability to distinguish
classes.

In Table 3.4 we see the same pattern with the Wine database as with the
Heart database before: the lowest dissimilarities relate to the most misclassifica-
tions. We also observe that while analysis of individual code length differences,
like Figure 3.2, suggests there should be no confusion in classification, a number
of transactions are misclassified. These can be tracked back as being artefacts
of the 10-fold cross validation on a small database.

The database dissimilarity measure

The experiments presented above verified that the aggregated differences of
database encodings provide a reliable means to measure the similarity of one
database to another. To make it into a true dissimilarity measure, we would
like it to be symmetric. Since the measure should indicate whether or not we
should investigate the differences between two databases, we do this by taking
the maximum value of two Aggregated Code Length Differences:

max{ACLD(D1, CT2), ACLD(D2, CT1)}

62

3.3. Database Dissimilarity

This can easily be rewritten in terms of compressed database sizes, without
using the ACLD function.

Definition 6. For all databases x and y, define the code table dissimilarity
measure DS between x and y as

DS(x, y) = max
{
CTy(Dx)− CTx(Dx)

CTx(Dx)
,
CTx(Dy)− CTy(Dy)

CTy(Dy)

}
.

The databases are deemed very similar (possibly identical) iff the score is
0, higher scores indicate higher levels of dissimilarity. Although at first glance
this method comes close to being a distance metric for databases, this is not
entirely the case. A distance metric D must be a function with non-negative
real values defined on the Cartesian product K ×K of a set K. Furthermore,
it must obey the following requirements for every k, l,m ∈ K:

1. D(k, l) = 0 iff k = l (identity)

2. D(k, l) = D(l, k) (symmetry)

3. D(k, l) +D(l,m) ≥ D(k,m) (triangle inequality)

For the MDL optimal compressors, we can prove that DS will be positive.
For our code table compressors, we can not. However, the experiments in the
previous two subsections as well as those in this one indicate thatDS is unlikely
to be negative. As we can not even guarantee that DS is always positive, we
can certainly not prove the identity axiom. The second axiom, the symmetry
axiom holds, of course, by definition. For the triangle inequality axiom we
again have no proof. However, in the experiments reported on this subsection
the axioms hold. In other words, for all practical purposes our measure acts
as a distance measure. However, to clearly indicate that our measure is not a
proven distance metric we call it a dissimilarity measure.

The dissimilarity measurements for the Heart, Nursery and Wine database
are given in respectively Tables 3.5, 3.6 and 3.7. One of the most striking ob-
servations is that many of the measurements are greater than 1.0, meaning that
the cross-compressed databases are more than twice as large as the natively-
compressed databases. The differences between the Nursery3 and Nursery5
datasets are such that a dissimilarity measurement of 10.12 is the result: a
difference of a factor 11 of the average encoded length of a transaction.

In Table 3.8 a summary of datasets, their characteristics and dissimilarity
results is given. For each dataset, the lowest and the highest observed dissimi-
larity is listed. A full results overview would obviously require too much space;
datasets with many classes have squared as many database pairs of which the
dissimilarity can be measured.

63

3. Characterising the Difference

Table 3.5: Heart: dissimilarity.

D1 D2 D3 D4

D2 0.85
D3 1.65 0.78
D4 1.85 0.65 0.61
D5 2.18 1.07 1.25 1.09

Table 3.6: Nursery: dissimilarity.

D1 D2 D3 D4

D2 2.62
D3 2.83 2.04
D4 3.10 1.91 4.05
D5 7.38 1.26 10.12 1.54

Table 3.7: Wine: dissimilarity.

D1 D2

D1 1.27
D2 1.32 1.73

Overall, we see that the dissimilarities between the classes of the UCI
datasets vary quite a bit. Some datasets seem to have very little difference
between classes (Connect–4, Adult, Tic–tac–toe), others contain rather large
dissimilarity (Mushroom, Iris, Led7).

Another interesting comparison is between the dissimilarities and the clas-
sification results also reported in that table, taken from Chapter 2. There is a
clear correlation between the two. The larger the dissimilarity, the better the
classification results. This pattern is less clear for datasets containing small
classes, which is caused by the fact that MDL doesn’t work well for small data
sets.

This observation is interesting because classification errors are made on indi-
vidual transactions, whereas DS is an aggregated measure. In other words, the
observation verifies that this aggregated measure reflects what happens at the
level of individual transactions. This is exactly the property our dissimilarity
measure should hold.

64

3.4. Characterising Differences

Table 3.8: Database characteristics.

Krimp Dissimilarity (DS)
Dataset |D| #classes minsup Acc. (%) Min Max
Adult 48842 2 20 84.6 0.60 0.60
Chess (kr–k) 28056 18 10 58.0 0.29 2.69
Connect–4 67557 3 50 69.9 0.18 0.28
Heart 303 5 1 52.5 0.61 2.18
Iris 150 3 1 96.0 2.06 13.00
Led7 3200 10 1 75.3 1.27 11.29
Letter 20000 26 50 68.1 0.43 2.83
Mushroom 8124 2 50 100 8.24 8.24
Nursery 12960 5 1 92.4 1.26 10.12
PenDigits 10992 10 20 88.6 1.33 4.43
Tic–tac–toe 958 2 1 87.1 0.62 0.62
Wine 178 3 1 97.7 1.27 1.73

Candidate minsup and class dissimilarity measurements for a range of
UCI datasets. As candidates, all frequent itemsets were used up to the
given minimum support level.

3.4 Characterising Differences

The first benefit of our dissimilarity measure is that it quantifies the difference
between databases, the second advantage is the ability to characterise those
differences.

There are three methods available for difference analysis, which zoom in to
separate levels of difference between the distributions. First, we can compare
the code table covers of the databases. This directly informs us which patterns
that are important in one database are either over or under-expressed in another
database. The second approach is to zoom in on how specific transactions are
covered by the different code tables. This reveals in detail where differences
are identified by the code tables. Thirdly, we can extract knowledge about
the specific differences and similarities between the distributions from the code
tables.

Comparing database covers

The most straightforward, but rather informative method for difference anal-
ysis is the direct comparison of database covers. Such evaluation immediately
identifies which patterns are over and under-expressed, showing us the charac-

65

3. Characterising the Difference

teristics of the differences in structure between the two databases.
To run this analysis, we first use Krimp to obtain a code table for database

D2 and use it to cover database D1. Because the itemsets and their frequencies
in the code table capture the data distribution of database D2, the frequencies
found by covering database D1 are expected to be different if the two databases
are different.

Identification of these differences is done by finding those patterns in the
code table that have a large shift in frequency between the two database cov-
ers. The same process can be applied vice versa for even better insight of the
differences.

If the distribution is really different, we would expect to see a dramatic
increase in use of the singletons caused by a decrease in use of the larger, more
specific, sets. Slighter differences will lead to more specific shifts in patterns
usage, with less of a shift towards singleton usage.

An example visualisation can be seen in Figure 3.4. A code table for Wine
D1 has been constructed and used to cover all three databases. A quick glance
shows that our hypothesis on the use of singletons is correct: D1 is covered by
quite some sets of 2 or more items, but both D2 and D3 are covered largely by
singletons.

Of special interest is the contrast in peaks between the plots, indicating
(strong) shifts in pattern usage. A rather strong difference in pattern usage is
visible for the lower indexes in the code table, corresponding to the longest,
most specific, patterns. However, in this figure the high peaks are also indica-
tive; we marked the peaks of an interesting case A1 and A2. These peaks are
at exactly the same code table element, meaning that this pattern is used quite
often in the covers of both D1 and D2. Note that it is not used at all in the
cover of D3; hence this pattern could really give us a clue as to what differen-
tiates D1 and D2 from D3. Another interesting peak is the one indicated with
B: although it is also applied in the other covers, this pattern is clearly used
much more often to cover D3.

Comparing transaction covers
A second approach for difference characterisation zooms in on individual database
rows, and is thus especially useful when you are interested in specific trans-
actions: why does a certain transaction belong to one database and not to
another? Again, we use our code tables to inspect this.

Suppose we have two databases and their respective code tables. After
computing the individual code length differences (as described in the first sub-
section of 3.3), it is easy to pick out those transactions that fit well in one
database and not in another. After selecting a transaction, we can cover it
with both code tables separately and visualise which patterns are used for this.
In general, it will be covered by longer and more frequent patterns if it belongs

66

3.4. Characterising Differences

Singletons Sets (at least 2 items)

0

10

20

U
sa

ge

DB 1

0 2 0 4 0 6 0 8 0 100

0

10

20

30

40

50

U
sa

ge

DB 3

0

10

20

30

40

U
sa

ge

DB 2

Code table elements

A1

B

A2

Figure 3.4: Comparing database covers. Each database of Wine has been
covered by code table CT1. Visualised is the absolute frequency for each of the
code table elements.

67

3. Characterising the Difference

16 19 24 15 29 1 25 0 12 3613 26 62

12 1316 26 36 0 1 15 19 24 25 29 62

0 16 19 20 24 6 7 36 1 25 3 4 29

0 1 3 4 6 7 16 19 20 24 25 29 36

CT
1

Transaction 2Transaction 1

CT
3

Figure 3.5: Wine; two transactions from D3 encoded by CT3 (above) and CT1
(below). The rounded boxes visualise the itemsets making up the cover of the
transaction. Each of the itemsets is linked to its code by the dashed line. The
widths of the black and white encodings represent the actual computed code
lengths.

to a certain distribution than if it does not. Manual inspection of the individual
transaction covers can reveal valuable knowledge.

As an example, have a look at another Wine example in Figure 3.5. The
encodings by CT1 and CT3 of two sets from D3 are shown. Left and right show
the same transactions, but they are covered by different itemsets (depicted by
the rounded boxes). The itemsets are linked to their codes with the dashed
lines. The width of each black or white code represents the length of that
particular code; together the sum of these widths makes up the total length of
the encoded transaction.

Looking at the upper transaction, we observe that both code tables cover
the transaction with itemsets of intermediate length. However, CT3 uses less
and different patterns in its cover than CT1. Moreover, the code lengths are
obviously shorter, relating to high occurrence in the distribution from which
CT3 was induced. For further inspection of how important such patterns are,
we zoom in to the pattern level in the third approach.

The covers of the second transaction give an even larger contrast than the
previous one. The native code table covers the transaction with few and large
patterns, while the other one uses only singletons. We may therefore conclude
this transaction fits very well in its native distribution and very bad in the
other. This also shows in the lengths of the encodings. Both examples show
again that more singletons are used in a cover when data doesn’t belong to a
distribution.

68

3.5. Related Work

Comparing code tables
The final third method for difference inspection focuses on the individual pat-
terns in a data distribution. In order to pinpoint the differences in this respect,
we have to directly compare the patterns in two code tables.

The weight and importance of patterns in the code tables cannot be com-
pared naively, as for many of the patterns in a code table there does not have to
be a direct equivalent in the other code table. However, the set of patterns in a
code table can also be regarded as a database; in that fashion we can actually
apply code tables to each other to find out what the alternative encoded length
for each pattern is.

For each pattern in a code table we can compare its own encoded length to
that of the alternative provided by the other code table, similarly to what we
did for transactions in Section 3.3. Likewise, if the distributions are similar,
we expect the encoded lengths to be comparable; even if the code tables use
rather different patterns to encode it. In contrast, exactly those patterns for
which the encoded lengths differ significantly mark the difference between the
distributions.

We analysed the CT2 and CT3 code tables of the Wine dataset, and found
further evidence for what puts these databases apart. The first peak in the
topmost plot of Figure 3.4 corresponds to the pattern (0 16 19 20 24) from CT3,
which due to its high relative usage is encoded natively using only 1.4bits. From
the same figure we already know this pattern is not used when covering the
other databases; suggesting that perhaps neither this pattern, nor anything like
it exists in the other code tables. Confirmation comes from an encoded length
of 12.6bits that CT2 assigns to this pattern; making it one of the patterns
for which the encoded lengths differ most. As CT2 cannot use any of the
more frequently occurring code table patterns, it has to resort to low-frequency
singleton encoding; arguably the least efficient method for encoding a pattern.

From the definition of the Wine database and analysis above we conclude
that the main difference between the two classes lies in the combination of
certain levels of malic acid (element 0) and a corresponding colour intensity
(16). While CT3 has a number of patterns that give these short encodings,
CT2 has virtually none: this pattern does not occur in this data distribution.

The above example evidently shows that the differences between the data
distributions can be directly analysed, and that through comparison of the
code table encodings key differences can be extracted. Similarities as well as
the differences between distributions are pinpointed.

3.5 Related Work

Our dissimilarity measure DS is clearly related to the Normalised Informa-
tion Distance (NID) and its compression-based instantiation NCD [80]. With

69

3. Characterising the Difference

the NCD, general compressors like gzip are used as Kolmogorov complexity
approximators and as such compressed sizes are used to measure distance be-
tween strings. As a generic distance, the NID has been successfully applied
in a plethora of clustering tasks including small snippet based language and
evolutionary tree rebuilding [31]. An adaptation was developed that has some
practical data mining applications, among which compression-based anomaly
detection [67].

However, the aim of the NID is different from ours: compression is only
used as a means to quantify differences, not to qualitatively find what these
differences are. In contrast, this is the main goal of our line of research. This is
illustrated by the results of both the previous chapter and here. By considering
transactional databases instead of individual strings and building code tables
that can be analysed, Krimp provides a very natural way to gain insight in the
differences between data distributions.

Our dissimilarity measure is also related to Emerging Patterns [38], al-
though there are major differences. First of all, here we only consider patterns
that are MDL-wise important with respect to the data distribution of a sin-
gle database. The code table built allows to investigate other data sets (or
transactions) from that particular database’s perspective. This in contrast to
Emerging Patterns, which are by definition identified as differences between
pairs of databases, without regarding individual data distributions. Although
we here focus on identifying differences, Krimp also reveals similarities be-
tween databases; arguably equally important when inspecting two databases.
Also, when a large number n of databases is to be compared, constructing n
code tables is computationally less intensive than mining n2 sets of Emerging
Patterns.

Secondly, Emerging Patterns are defined as patterns having a large differ-
ence in support (growth rate) between two databases. However, the frequencies
used in our approach depend on the database cover, thus taking into account
other patterns (and their order) in the code table. Through these dependen-
cies, important changes in the structure of the data are enlarged and therefore
easier to spot.

Thirdly, Krimp only selects small numbers of patterns. This allows for
manual inspection at all stages, from data distribution approximation to differ-
ence detection and characterisation. Emerging Patterns suffer from the same
combinatory explosion problem as frequent patterns: in order to capture all
differences, a low (zero) growth rate has to be used, resulting in obstructively
many patterns. Shorter descriptions have been defined for EPs, for example us-
ing borders [39], but as these only give a shorter description for the same set of
patterns, manual inspection remains impossible. The set of Emerging Patterns
cannot straightforwardly be reduced by Krimp. First, because it operates on
individual databases, not on pairs. Second, to satisfy the MDL assumption,

70

3.6. Conclusions

the candidate pattern set should enable the algorithm to grasp full data distri-
butions, not just differences. This is guaranteed by the frequent pattern set,
but not by a set solely consisting of EPs.

3.6 Conclusions

In previous work, the MDL-principle and its implementation in the Krimp al-
gorithm have proven themselves to be a reliable way for approximating the data
distributions of databases. Here, we used this principle to develop a database
dissimilarity measure with which characteristic differences between databases
can be discovered.

Histograms for encoded transaction lengths, and the differences thereof,
show differences between data distributions straightforwardly. From the MDL
principle, code tables with a good fit on the distribution of some data provide
shorter codes and smaller standard deviations than code tables less suited for
the data at hand. The code length difference is shown to be a good indication
to how well a transaction fits a distribution.

We show the informative quality of the aggregation of the code length dif-
ferences. The measured likenesses show close relation to the confusion matrices
of earlier classification experiments; the number of misclassified instances drops
according to this measure.

We define a generic dissimilarity measure on databases as the maximum
of two mirrored aggregated code length difference measurements; it is sym-
metric and well suited to detect and characterise the differences between two
databases. While we cannot prove it to fulfil the distance metric axioms, we
argued that these hold for all practical purposes.

A large advantage of our method is that it allows for thorough inspection of
the actual differences between data distributions. Based on the dissimilarity,
three methods for detailed inspection are proposed. The most detailed method
zooms in onto and compares the patterns that describe the data distribution in
the code tables. Individual transactions that do not fit the current distribution
well can be identified. Further, it can be analysed why they do not fit that dis-
tribution well. Last but not least is the possibility to take a more global stance
and pinpoint under or over expressed patterns in the respective databases.

Dissimilarity measures are key to many different data mining algorithms.
For instance, it would be possible to apply our measure in a number of bioinfor-
matics applications using these algorithms. For example, in those cases where
classification appears to be hard; deeper insight in the causes of these problems
might suggest promising research directions.

71

CHAPTER 4

Identifying the Components

Most, if not all, databases are mixtures of samples from different distri-
butions. Transactional data is no exception. For the prototypical example,
supermarket basket analysis, one also expects a mixture of different buying
patterns. Households of retired people buy different collections of items than
households with young children.

Models that take such underlying distributions into account are in general
superior to those that do not. In this chapter we introduce two MDL-based
algorithms that follow orthogonal approaches to identify the components in
a transaction database. The first follows a model-based approach, while the
second is data-driven. Both are parameter-free: the number of components
and the components themselves are chosen such that the combined complexity
of data and models is minimised. Further, neither prior knowledge on the
distributions nor a distance metric on the data is required. Experiments with
both methods show that highly characteristic components are identified.1

1 This work was originally published as [79]:
Van Leeuwen, M., Vreeken, J. and Siebes, A. (2009) Identifying the Components. Data
Mining and Knowledge Discovery. 19(2):173-192. Springer. (ECML PKDD’09 Special Issue)
(Best student paper award)

73

4. Identifying the Components

4.1 Introduction

Most, if not all, databases are mixtures of samples from different distributions.
In many cases, nothing is known about the source components of these mixtures
and therefore many methods that induce models regard a database as sampled
from a single data distribution. While this greatly simplifies matters, it has
the disadvantage that it results in suboptimal models.

Models that do take into account that databases actually are sampled from
mixtures of distributions are often superior to those that do not, independent
of whether this is modelled explicitly or implicitly. A well-known example of
explicit modelling is mixture modelling [120]. This statistical approach models
data by finding combinations of several well-known distributions (e.g. Gaussian
or Bernoulli) that are assumed to underlie the data.

Boosting algorithms [43] are a good example of implicit modelling of mul-
tiple underlying distributions. The principle is that a set of weak learners can
together form a single strong learner. Each separate learner can adapt to a
specific part of the data, implicitly allowing for modelling of multiple distribu-
tions.

Transaction databases are no different with regard to data distribution. As
an illustrative example, consider supermarket basket analysis. One also expects
a mixture of different buying patterns: different groups of people buy different
collections of items, although overlap may exist. By extracting both the groups
of people and their corresponding buying patterns, a company can learn a lot
about its customers.

Part of this problem is addressed by clustering algorithms, as these group
data points together, often based on some distance metric. However, since we
do not know upfront what distinguishes the different groups, it is hard to define
the appropriate distance metric. Furthermore, clustering algorithms such as k-
means [88] only find the groups of people and do not give any insight in their
corresponding buying behaviours. The only exception is bi-clustering [104],
however this approach imposes strong restrictions on the possible clusters.

Frequent itemset mining, on the other hand, does give insight into what
items customers tend to buy together, e.g. the (in)famous Beer and Nappies
example. But, not all customers tend to buy Nappies with their Beer and
standard frequent set mining does not distinguish groups of people. Clearly,
knowing several groups that collectively form the client base as well as their
buying patterns would provide more insight. So, the question is: can we find
these groups and their buying behaviour? That is, we want to partition the
database D in sub-databases D1, · · · ,Dk such that

• the buying behaviour of each Di is different from all Dj (with j 6= i), and

• each Di itself is homogeneous with regard to buying behaviour.

74

4.2. Problem Statement

But, what does ‘different buying behaviour’ mean? It certainly does not mean
that the different groups should buy completely different sets of items. Also,
it does not mean that these groups cannot have frequent itemsets in common.
Rather, it means that the characteristics of the sampled distributions are differ-
ent. This may seem like a play of words, but it is not. Sampled distributions of
transaction data can be characterised precisely through the use of code tables.

In Chapter 2 we introduced the Krimp algorithm. We use code tables and
MDL to formalise our problem statement. That is: find a partitioning of the
database such that the total compressed size of the components is minimised.
This problem statement agrees with the compression perspective on data min-
ing as recently positioned by Faloutsos et al. [42].

We propose two orthogonal methods to solve the problem at hand. The first
method is based on the assumption that Krimp implicitly models all underlying
distributions in a single code table. If this is the case, it should be possible to
extract these and model them explicitly. We propose an algorithm to this end
that optimises the compressed total size by specialising copies of the original
compressor to the different partial distributions of the data.

Throughout our research we observed (see Chapters 2.5 and 3) that by par-
titioning a database, e.g. on class label, compressors are obtained that encode
transactions from their ‘native’ distribution shortest. This observation suggests
an iterative algorithm that resembles k-means: without any prior knowledge,
randomly split the data in a fixed number of parts, induce a compressor for
each and re-assign each transaction to the compressor that encodes it shortest,
etcetera. This scheme is very generic and could also be easily used with other
types of data and compressors. Here, as we are concerned with transaction
data, we employ Krimp as compressor.

Both algorithms are implemented and evaluated on basis of total com-
pressed sizes and component purity, but we also look at (dis)similarities be-
tween the components and the code tables. The results show that both our
orthogonal methods identify the components of the database, without param-
eters: the optimal number of components is determined by MDL. Visual in-
spection confirms that characteristic decompositions are identified.

4.2 Problem Statement

Preliminaries

In this chapter we use the same notions and notations regarding databases,
itemsets as in Chapter 2. Also, we will use MDL, and the Krimp algorithm,
as introduced in that chapter. Further, we will use the database dissimilarity
measure introduced in the previous chapter to determine how different the
identified database components are. Two databases are deemed very similar

75

4. Identifying the Components

(possibly identical) iff the score is 0, higher scores indicate greater dissimilarity.
As discussed in Chapter 2, code tables characterise the sampled distribu-

tions of the data. Hence, as we want a partitioning for which the different
components have different characteristics, they should have different code ta-
bles. In terms of MDL, this is stated as follows.

The problem
Our goal is to discover an optimal partitioning of the database; optimal, in the
sense that the characteristics of the different components are different, while
the individual components are homogeneous.

As discussed before, code tables characterise the sampled distributions of
the data. Hence, we want a partitioning for which the different components
have different characteristics, and thus code tables. In terms of MDL, this is
stated as follows.

Problem 1. Let I be a set of items and let D be a bag of transactions over
I. Find a partitioning D1, · · · ,Dk of D and a set of associated code tables
CT1, · · · , CTk, such that the total encoded size of D,∑

i∈{1,··· ,k}

L(CTi,Di),

is minimised.

There are a few things one should note about this statement. First, we
let MDL determine the optimal number of components for us, by picking the
smallest encoded size over every possible partitioning and all possible code
tables. Note that this also ensures that we will not end up with two components
that have the same or highly similar code tables. It would be far cheaper to
combine these.

Secondly, asking for both the database partitioning and the code tables is
in a sense redundant. For any partitioning, the best associated code tables are,
of course, the optimal code tables. The other way around, given a set of code
tables, a database partitions naturally. Each transaction goes to the code table
that compresses it best. This suggests two ways to design an algorithm to solve
the problem. Either one tries to find an optimal partitioning or one tries to
find an optimal set of code tables.

Thirdly, the size of the search space is gigantic. The number of possible
partitions of a set of n elements is the well-known Bell number Bn. Similarly,
the number of possible code tables is enormous. It consists of the set of all sets
of subsets of that contain at least the singletons. Further, for each of these
code tables we would have to consider all possible combinations of covers per
transaction. Moreover, there is no structure in this search space that we can

76

4.3. Model-Driven Component Identification

use to prune. Hence, we will have to introduce heuristic algorithms to solve
our problem.

Datasets
We use a number of UCI datasets [33], the Retail dataset [17] and the Mammals
dataset2 [58] for experimental validation of our methods. The latter consists
of presence/absence records of 121 European mammals in geographical areas
of 50× 50 kilometres . The properties of these datasets are listed in Table 4.1.
For fair comparison between the found components and the original classes,
the class labels are removed from the databases in our experiments. In ad-
dition, Krimp candidates (all or closed frequent itemsets up to minsup), the
regular (single-component) Krimp compressed size of the database and class
dissimilarities are given. Average class dissimilarities are computed by splitting
the database on class label, computing pair-wise code table dissimilarities as
defined above and taking the average over these. Both Retail and Mammals
datasets do not contain class labels.

4.3 Model-Driven Component Identification

In this section we present an algorithm that identifies components by finding
an optimal set of code tables.

Motivation
A code table induced for a complete database captures the entire distribution,
so the multiple underlying component distributions are modelled implicitly.
This suggests that we should be able to extract code tables for specific com-
ponents from the code table induced on the whole database, the original code
table.

If the data in a database is a mixture of several underlying data distri-
butions, the original code table can be regarded as a mixture of code tables.
This implies that all patterns required for the components are in the code table
and we only need to ‘extract’ the individual components. In this context, each
possible subset of the original code table is a candidate component and thus
each set of subsets a possible decomposition. So, given an original code table
CT induced for a database D, the optimal model driven decomposition is the
set of subsets of CT that minimises the total encoded size of D.

Obviously, the optimal decomposition could be found by simply trying all
possible decompositions. However, although code tables consist of only few

2The full dataset [96] is available for research purposes from the Societas Europaea
Mammalogica,http://www.european-mammals.org

77

4. Identifying the Components

Table 4.1: Basic statistics and Krimp statistics of the datasets used in the
experiments.

Basic Statistics
Dataset |D| |I| |C| pure
Adult 48842 95 2 76.1
Anneal 898 65 6 76.2
Chess (kr–k) 28056 40 18 16.2
Mammals 2183 121 - -
Mushroom 8124 117 2 51.8
Nursery 12960 21 2 33.3
Pageblocks 5473 33 11 89.8
Retail 88162 16470 - -

Krimp
Dataset Cand’s ms L(CT,D) DS
Adult Closed 20 841604 0.8
Anneal All 1 21559 6.3
Chess (kr–k) All 10 516623 1.3
Mammals Closed 150 164912 -
Mushroom Closed 1 272600 8.4
Nursery Closed 1 240537 4.2
Pageblocks All 1 7160 10.6
Retail All 16 10101135 -

Statistics on the datasets used in the experiments. As basic statistics,
provided are the number of transactions, number of items, number
of classes and purity (pure, the accuracy by majority class voting).
Krimp-specific are the candidates used (all or closed frequent item-
sets), the minsup(ms) at which the candidates are mined, the total
compressed size in bits and the average code table dissimilarity be-
tween the classes.

78

4.3. Model-Driven Component Identification

Algorithm 6 Model-Driven Component Identification
IdentifyTheComponentsByModel (D,minsup) :

1: CTorig ← Krimp(D, MineFreqSets(D,minsup))
2: b← arg min

k∈[1,|D|]
CalcEncSize(IdKComponentsByModel(D, CTorig, k))

3: return IdentifyKComponents(D, CTorig, b)

IdKComponentsByModel (D, CTorig, k) :
4: C ← { k Laplace corrected copies of CTorig }
5: do e← FindBestElimination (D, C, k)
6: C ← ApplyElimination(C, e)
7: while compressed size decreases
8: return C

FindBestElimination (D, C, k) :
9: (Cb, B)← arg min

Ci∈C,X∈Ci
CalcEncSize(D, (C \ Ci) ∪ (Ci \X), k)

10: return (Cb, B)

CalcEncSize (D, C, k) :
11: for each t ∈ D : assign t to CTi ∈ C that gives the shortest code
12: for each CTi ∈ C : ComputeOptimalCodes(Di, CTi)
13: return

∑
i L(Ci,Di)

patterns (typically hundreds), the search space for such approach is enormous.
Allowing only partitions of the code table would strongly reduce the size of
the search space. But, as different distributions may have overlapping common
elements, this is not a good idea. The solution is therefore to apply a heuristic.

Algorithm
The algorithm, presented in detail in Algorithm 6, works as follows: first, obtain
the overall code table by applying Krimp to the entire database (line 1). Then,
for all possible values of k, i.e. [1, |D|], identify the best k components. We
return the solution that minimises the total encoded size (2-3).

To identify k components, start with k copies of the original code table (6).
A Laplace correction of 1 is applied to each copy, meaning that the frequencies
of all itemsets in the code table are increased by one. This correction ensures
that each code table can encode any transaction, as no itemsets with zero fre-
quency (and therefore no code) can occur. Now, iteratively eliminate that code
table element that reduces the total compressed size most; until compression
cannot be improved any further (5-7). Iteratively, each element in each code
table is temporarily removed to determine the best possible elimination (9). To

79

4. Identifying the Components

Table 4.2: Experimental results for Model-Driven Component Identification

Model-Driven Component Identification
Dataset Gain L% Purity (%) avg. DS opt. k max. k
Adult 8.7 76.1 6.44 2 2
Anneal 18.1 80.8 5.96 19 30
Chess (kr–k) 14.5 18.2 2.86 6 7
Mushroom 25.7 88.2 11.32 12 15
Nursery 11.7 45.0 1.77 14 20
PageBlocks 46.4 91.5 804.9 6 40

Experimental results for Model-Driven Component Identification.
Given are the gain in compression over the single component
Krimp compression, component purity by majority class voting, av-
erage dissimilarity between the components, the optimal value of k and
the maximum value of k.

compute the total compressed size, each transaction is assigned to that code
table that compresses it best (11). This can be translated as being the Bayes
optimal choice (see Chapter 2.5). After this, re-compute optimal code lengths
for each component (frequencies may have changed) and compute the total
encoded size by summing the sizes of the individual components (12-13).

Experiments
The results of the experiments with the algorithm just described are sum-
marised in Table 4.2. By running IdentifyTheComponentsByModel for
all values of k and choosing the smallest decomposition, MDL identifies the
optimal number of components. However, the search space this algorithm con-
siders grows enormously for large values of k, so in our experiments we imposed
a maximum value for k.

The compression gain is the reduction in compressed size relative to that
attained by the original code table; the regular Krimp compressed size as given
in Table 4.1. The compression gains in Table 4.2 show that the algorithm ably
finds decompositions that allow for a much better compression than when the
data is considered as a single component. By partitioning the data, reductions
from 9% up to 46% are obtained. In other words, for all datasets compression
improves by using multiple components.

We define purity as the weighted sum of individual component purities,
a measure commonly used in clustering. Hence, the baseline purity is the
percentage of transactions belonging to the majority class. If we look at the
obtained purities listed in Table 4.2 and compare these to the baseline values

80

4.3. Model-Driven Component Identification

in Table 4.1, we notice that these values range from baseline to very good.
Especially the classes of the Mushroom and PageBlocks datasets get separated
well. The average (pairwise) dissimilarity between the Optimal k components,
Average DS, shows how much the components differ from each other. We obtain
average dissimilarities ranging from 1.7 to 804.9, which are huge considering the
values measured between the actual classes (as given in Table 4.1). Without
any prior knowledge the algorithm identifies components that are at least as
different as the actual classes. While for the Adult database the obtained purity
is at baseline, the data is very well partitioned: the dissimilarity between the
components measures 6.4, opposed to just 0.8 between the actual classes.

Arguably, the most important part of the results is the code tables that
form the end product of the algorithm: these provide the characterisation of
the components. Inspection of these provides two main observations. First,
a number of the original elements occur in multiple components, others occur
only in a single component and some lost their use. Secondly, the code lengths
of the elements are adapted to the specific components: codes become shorter,
but lengths also change relative to each other. Example original and resulting
code tables are depicted in Figure 4.1.

Discussion

The significantly smaller total encoded sizes after decomposition show that
the proposed algorithm extracts different underlying distributions from the
mixture. The purities and component dissimilarities show that components
are different from each other but homogeneous within themselves.

One of the properties of the method is that the number of (unique) patterns
required to define the components is never higher than the number of itemsets in
the original code table, which consists of only few patterns (see Chapter 2.5). As
the total number of patterns actually used in defining the components is often
even smaller, the resulting code tables can realistically be manually inspected
and interpreted by domain experts.

The running times for the reported experiments ranged from a few minutes
for Anneal up to 80 hours for Adult. Obviously, more computation time is
needed for very dense and/or very large databases, which is why in this section
no results are presented for Retail and Mammals. While parallelisation of the
algorithm is trivial and should provide a significant speedup, there is another
approach to handle large datasets: the data driven method presented in the
next section is inherently much faster.

81

4. Identifying the Components

C
o

d
es

CT
2

CT
1CT-orig

Figure 4.1: The components of Anneal. Codes and their lengths (in bits, rep-
resented by width) for original and component code tables, k = 2. Common
elements are marked by arrows.

82

4.4. Data-Driven Component Identification

4.4 Data-Driven Component Identification

In this section, we present an approach to identify the components of a dataset
by finding the MDL-optimal partitioning of the data.

Motivation
Suppose we have two equally sized databases, D1 and D2, both drawn from
a mixture of distributions DA and DB . Further, suppose that D1 has more
transactions from DA than from DB and vice versa for D2. Now, we induce
compressors C1 and C2 for D1 and D2 respectively. Assuming that DA and
DB are different, C1 will encode transactions from distribution DA shorter
than C2, as C1 has seen more samples from this distribution than C2. This
bias will be stronger if more transactions come from a single distribution - and
the strongest when the data consists solely of transactions from one distribu-
tion. So, provided a particular source distribution has more transactions in
one database than in another, transactions of that distribution will be encoded
shorter by a compressor induced on that data.

We can exploit this property to find the components of a database. Given
a partitioning of the data, we can induce a code table for each part. Now, we
simply reassign each transaction to that part whose corresponding code table
encodes it shortest. We thus re-employ the Bayes optimal choice to group
those transactions that belong to similar distribution(s) (see Chapter 2.5. By
doing this iteratively until all transactions remain in the same part, we can

Algorithm 7 Data-Driven Component Identification
IdentifyTheComponentsByData (D,minsup)

1: for k = 2 to |D| do rk ← IdentifyKComponentsByData(D, k,minsup)
2: best← arg min

k∈[1,|D|]
CalcEncodedSize(D, rk, k)

3: return rbest

IdentifyKComponentsByData (D, k,minsup)
4: parts← Partition(RandomizeOrder(D), k)
5: do
6: for each pi ∈ parts do
7: CTi ← Krimp(pi, MineFreqSets(pi,minsup))
8: for each X ∈ CTi do usageD(X)← usageD(X) + 1
9: end for
10: for each t ∈ D do assign t to CTi that gives the shortest code
11: while transactions were swapped
12: return parts

83

4. Identifying the Components

Table 4.3: Experimental results for Data-Driven Component Identification

Data-Driven Component Identification
Dataset Gain L% Purity (%) avg. DS opt. k
Adult 40.3 82.2 31.7 177
Anneal 4.8 76.2 3.7 2
Chess (kr–k) 18.2 17.8 2.9 13
Mammals 46.2 - 1.7 6
Mushroom 14.7 75.6 7.8 20
Nursery 15.0 43.4 3.6 8
PageBlocks 70.3 92.5 19.6 30
Retail 25.5 - 0.10 2

Experimental results for Data-Driven Compnent Identification. Per
database, the gain in compression over regular Krimp compression,
component purity by majority class voting, average dissimilarity be-
tween the components and the optimal value of k are shown.

identify the components of the database. This method can be seen as a form
of k-means; without the need for a distance metric and providing insight in the
characteristics of the found groupings through the code tables.

Algorithm

From the previous subsection it is clear what the algorithm will look like, but its
initialisation remains an open question. Without prior background knowledge,
we start with a random initial partitioning. Because of this, it is required
to do a series of runs for each experiment and let MDL pick the best result.
However, as transactions are reassigned to better fitting components already
in the first iteration, it is expected that the algorithm will be robust despite
this initial non-deterministic step. The algorithm is presented in pseudo-code
as Algorithm 7.

Experiments

Each experiment was repeated 10 times, each run randomly initialised. The
different runs resulted in almost the same output, indicating that random ini-
tialisation does not harm robustness. In Table 4.3 we report the main results of
these experiments. The reported results are those of the run with the shortest
global encoded length.

84

4.4. Data-Driven Component Identification

Figure 4.2: The components of Mammals (k = 6, optimal).

For all datasets decompositions are found that allow for much better com-
pression of the whole. The gains show that very homogeneous blocks of data
are identified; otherwise the total encodings would only have become longer, as
many code tables have to be included instead of one. The components identi-
fied in the Adult, Mammals and Pageblocks datasets are so specific that between
40% and 70% fewer bits are required than when the data is compressed as a
single block.

In between, however, the components are very heterogeneous. This is shown
by the average dissimilarity measurements. For example, the 19.6 measured
for Pageblocks means that on average 1960% more bits would be required for a
random transaction, if it were encoded by a ‘wrong’ component. Also for the
other datasets partitions are created that are at least as different as the original
classes (see Table 4.1). Further, the component purities are in the same league
as those of the model driven algorithm.

The geographic Mammals dataset allows us to meaningfully visually inspect
the found components. Figure 4.2 shows the best found decomposition. Each
of the rows (i.e. grid location of 50 × 50 kilometres) has been assigned to one
of the six components based on its items (i.e. the mammals that have been
recorded at that location). This is a typical example where normally ad-hoc

85

4. Identifying the Components

solutions are used [58] as it is difficult to define a meaningful distance measure.
Our method only regards the characteristics of the components, the patterns
in which the items occur. As can be seen in Figure 4.2, this results in clear
continuous and geographically sound groupings - even though the algorithm was
completely uninformed in this regard. For example, the top row components
cover respectively the ‘polar’ region, highlands and more temperate areas of
Europe.

Discussion
Much shorter data descriptions and high dissimilarities found show that highly
specific database components are identified: internally homogeneous and het-
erogeneous in between. Moreover, the improvements in purity over the baseline
show that many components have a strong relation to a particular class. Al-
though mainly a property of the data, the optimal number of components we
identify is low, which enables experts to analyse and interpret the components
by hand.

By definition, each randomly initialised run of the algorithm may result in
a different outcome. In all our experiments, however, we found the outcomes
to be stable - indicating the robustness of a data compression approach. Nev-
ertheless, to ensure that one finds a very good solution a couple of runs are
required. However, as only partitions of the data have to be compressed, the
algorithm runs very fast (a run typically takes seconds to minutes) so this poses
no practical problems. For example, for the largest dataset, Retail, it took only
six hours in total to run ten independent runs over all k.

4.5 Discussion

The components of a database can be identified using both model and data
driven compression approaches. The experimental results show that both meth-
ods return characteristic partitions with much shorter total encoded size than
regular single–component Krimp compression. The distributions of the com-
ponents are shown to be very different from each other using dissimilarity
measurements. These dissimilarities show that the code tables, and thus the
patterns present in the data, are very unalike - i.e. the characteristics of the
data components are different.

The optimal number of components is determined automatically by MDL
by either method: no parameter k has to be set by hand. Each of the two
proposed component identification methods has its own merit and depending
on the data and computational power available one may choose for either the
data or model driven algorithm. When dealing with (very) large databases,
the data driven method is bound to provide good results quickly. For analysis

86

4.6. Related Work

of reasonable amounts of data the model driven method has the advantage of
characterising the components very well with only modest numbers of patterns.
Although we here focus on transaction data and the Krimp encoding, note that
without much effort the framework can be generalised to a generic solution
based on MDL: given a data type and suited encoding scheme, components
can be identified by minimising the total compressed size. Especially the data
driven algorithm is very generic and can be easily applied to other data types
or adapted to use different compressors. This is trivial if a compressor can
encode single transactions, otherwise one should assign each transaction to the
component of which the encoded size of transaction and component is minimal.
The model driven algorithm is more specific to our code table approach, but
can also be translated to other data types.

4.6 Related Work

Clustering is clearly related to our work, as it addresses part of the problem
we consider. The best-known clustering algorithm is k-means [88], to which
our data driven component identifier is related as both iteratively reassign
data points to the currently closest component. For this, k-means requires
a distance metric, but it is often hard to define one as this requires prior
knowledge on what distinguishes the different components. Our method does
not require any a priori knowledge. In addition, clustering only aims at finding
components, while here we simultaneously model these partitions explicitly
with small pattern sets.

Local frequency of items has been used by Wang et al. [130] to form clusters,
avoiding pair-wise comparisons but ignoring higher order statistics. Aggarwal
et al. [1] describe a form of k-means clustering with market basket data, but for
this a similarity measure on transactions is required. This measure is based on
pair-wise item correlations; more complex (dis)similarities between transactions
may be missed. Moreover, many parameters (eight) have to be set manually,
including the number of clusters k.

Bi-clustering algorithms [104] look for linked clusters of both objects and
attribute-value pairs called bi-clusters. These methods impose more restrictions
on the possible clusters; for instance, they do not per se allow for overlap of the
attribute-value pairs in the clusters. Further, the number of clusters k often
has to be fixed in advance.

Koyotürk et al. [77] regarded item data as a decomposable matrix, of which
the approximation vectors were used to build hierarchical cluster trees. How-
ever, rather many vectors are required for decomposition. Cadez et al. [24]
do probabilistic modelling of transaction data to characterise (profile) what we
would call the components within the data, which they assume to be known
beforehand.

87

4. Identifying the Components

Recently, a number of information theoretic approaches to clustering have
been proposed. The Information Bottleneck [119] can be used to find clusters
by minimising information loss.

In particular, LIMBO [9] focuses on categorical databases. Main differences
with our approach are that the number of clusters k has to be specified in
advance, and as a lossy compression scheme is used MDL is not applicable.

Entropy measures allow for non-linearly defined clusters to be found in
image segmentation tasks [51]. The MDL principle was used for vector quanti-
zation [14], where superfluous vectors were detected via MDL. Böhm et al. [15]
used MDL to optimise a given partitioning by choosing specific models for each
of the parts. These model-classes need to be pre-defined, requiring premonition
of the component models in the data. Cilibrasi and Vitányi [31] used pairwise
compression to construct hierarchical cluster trees with high accuracy. The
method works well for a broad range of data, but performance deteriorates
for larger (>40 rows) datasets. Kontkanen et al. [73] proposed a theoretical
framework for data clustering based on MDL which shares the same global
code length criterion with our approach, but does not focus on transaction
databases.

4.7 Conclusion

Transaction databases are mixtures of samples from different distributions;
identifying the components that characterise the data, without any prior knowl-
edge, is an important problem. We formalise this problem in terms of total com-
pressed size using MDL: the optimal decomposition is that set of code tables
and partitioning of the data that minimises the total compressed size. No prior
knowledge on the distributions, distance metric or the number of components
has to be known or specified.

We presented two approaches to solve the problem and provide parameter-
free algorithms for both. The first algorithm provides solutions by finding
optimal sets of code tables, while the second does this by finding the optimal
data partitioning. Both methods result in significantly improved compression
when compared to compression of the database as a whole. Component purity
and dissimilarity results confirm our hypothesis that characteristic components
can be identified by minimising total compressed size. Visual inspection shows
that MDL indeed selects sound groupings.

The approach we present can easily be adopted for other data types and
compression schemes. The Krimp-specific instantiation for categorical data in
this chapter shows that the MDL principle can be successfully applied to this
problem. The data driven method especially is very generic and only requires
a compression scheme that approximates the Kolmogorov Complexity of the
data.

88

CHAPTER 5

Data Generation for Privacy
Preservation

Many databases will not or can not be disclosed without strong guarantees
that no sensitive information can be extracted. To address this concern several
data perturbation techniques have been proposed. However, it has been shown
that either sensitive information can still be extracted from the perturbed data
with little prior knowledge, or that many patterns are lost.

In this chapter we show that generating new data is an inherently safer
alternative. We present a data generator based on the models obtained by the
MDL-based Krimp algorithm. These are accurate representations of the data
distributions and can thus be used to generate data with the same character-
istics as the original data.

Experimental results show a very large pattern-similarity between the gen-
erated and the original data, ensuring that viable conclusions can be drawn
from the anonymised data. Furthermore, anonymity is guaranteed for suited
databases and the quality-privacy trade-off can be balanced explicitly.1

1 This is an extended and edited version of work originally published as [125]:
Vreeken, J., Van Leeuwen, M. and Siebes, A. (2007) Preserving Privacy through Data Gen-
eration. In Proceedings of the ICDM’ 07, pages 685-690.

89

5. Data Generation for Privacy Preservation

5.1 Introduction

Many databases will not or can not be disclosed without strong guarantees
that no sensitive information can be extracted from it. The rationale for this
ranges from keeping competitors from obtaining vital business information to
the legally required protection of privacy of individuals in census data. How-
ever, it is often desirable or even required to publish data, leaving the question
how to do this without disclosing information that would compromise privacy.

To address these valid concerns, the field of privacy-preserving data mining
(PPDM) has rapidly become a major research topic. In recent years ample
attention is being given to both defender and attacker stances, leading to a
multitude of methods for keeping sensitive information from prying eyes. Most
of these techniques rely on perturbation of the original data: altering it in such
a way that given some external information it should be impossible to recover
individual records within certainty bounds.

Data perturbation comes in a variety of forms, of which adding noise [7],
data transformation [3] and rotation [30] are the most commonly used. At
the heart of the PPDM problem is the balance between the quality of the
released data and the amount of privacy it provides. While privacy is easily
ensured by strongly perturbing the data, the quality of conclusions that can be
drawn from it diminishes quickly. This is inherent of perturbation techniques:
sensitive information cannot be fully masked without destroying non-sensitive
information as well [64]. This is especially so if no special attention is given to
correlations within the data by means of multidimensional perturbation [61],
something which has hardly been investigated so far [86].

An alternative approach to the PPDM problem is to generate new data
instead of perturbing the original. This has the advantage that the original
data can be kept safe as the generated data is published instead, which renders
data recovery attacks useless. To achieve this, the expectation that a data
point in the generated database identifies a data point in the original database
should be very low, whilst all generated data adhere to the characteristics of
the original database. Data generation as a means to cover-up sensitivities
has been explored in the context of statistical databases [82], but that method
ignores correlations as each dimension is sampled separately.

We propose a novel method that uses data generation to guarantee privacy
while taking important correlations into account. For this we use Krimp , for
which we have shown that it provides accurate pattern-based approximations
of data distributions. Using the patterns picked by MDL, we can construct a
model that generates data very similar (but not equal) to the original data.
Experiments show that the generative model is well suited for producing data
that conserves the characteristics of the original data while preserving privacy.

Using our generative method, it is easy to ensure that generated data points
cannot reliably be traced to individual data points in the original data. We

90

5.2. The Problem

can thus easily obtain data that is in accordance with the well-known privacy
measure k-anonymity [111]. Also, we can mimic the effects that can be obtained
with l-diversity [87].

Although preserving intrinsic correlations is an important feat, in some
applications preservation of particular patterns might be highly undesirable
from a privacy point of view. Fortunately, this can easily be taken care of in
our scheme by influencing model construction.

5.2 The Problem

Data perturbation

Since Agrawal & Srikant [7] initiated the privacy-preserving data mining field,
researchers have been trying to protect and reconstruct sensitive data. Most
techniques use data perturbation and these can be divided into three main
approaches, of which we will give an overview here.

The addition of random noise to the original data, obfuscating without
completely distorting it, was among the first proposals for PPDM [7]. However,
it was quickly shown that additive randomisation is not good enough [4]. The
original data can often be reconstructed with little error using noise filtering
techniques [64] - in particular when the distortion does not take correlations
between dimensions into account [61].

The second class is that of condensation-based perturbation [3]. Here, after
clustering the original data, new data points are constructed such that clus-
ter characteristics remain the same. However, it has been observed that the
perturbed data is often too close to the original, thereby compromising pri-
vacy [30]. A third major data perturbation approach is based on rotation of
the data [30]. While this method seemed sturdy, it has recently been shown
that with sufficient prior knowledge of the original data the rotation matrix
can be recovered, thereby allowing full reconstruction of the original data [86].
In general, perturbation approaches suffer from the fact that original data is
used as starting point. Little perturbation can be undone, while stronger per-
turbation destroys both correlations and non-sensitive information. In other
words, there is a privacy-quality trade-off that can not be balanced well.

In the effort to define measures on privacy, a few models have been proposed
that can be used to obtain a definable amount of privacy. An example is the
well-known k-anonymity model that ensures that no private information can be
related to fewer than k individuals [111]. A lack of diversity in such masses can
thwart privacy though and in some situations it is well possible to link private
information to individuals. Improving on k-anonymity, the required critical
diversity can be ensured using the l-diversity model. However, currently the
available method can only ensure diversity for one sensitive attribute [87].

91

5. Data Generation for Privacy Preservation

Data generation
The second category of PPDM solutions consists of methods using data gener-
ation, generating new (privacy preserving) data instead of altering the original.
This approach is inherently safer then data perturbation, as newly generated
data points can not be identified with original data points. However, not much
research has been done in this direction yet.

Liew et al. [82] sample new data from probability distributions indepen-
dently for each dimension, to generate data for use in a statistical database.
While this ensures high quality point estimates, higher order dependencies are
broken - making it unsuited for use in data mining.

The condensation-based perturbation approach [3] could be regarded as a
data generation method, as it samples new data points from clusters. How-
ever, as mentioned above, it suffers from the same problems as perturbation
techniques.

Problem statement
Reviewing the goals and pitfalls of existing PPDM methods, we conclude that
a good technique should not only preserve privacy but also quality. This is
formulated in the following problem statement:

A database Dpriv induced from a database Dorig is privacy and quality
preserving iff:

1. no sensitive information in Dorig can be derived from Dpriv given a limited
amount of external information (privacy requirement).

2. models and patterns derived from Dpriv by data mining techniques are
also valid for Dorig (quality requirement).

From this statement follows a correlated data generation approach to induce
a privacy and quality preserving database Dpriv from a database Dorig, for
which the above requirements can be translated into concrete demands.

Using Krimp, construct a model that encapsulates the data distribution of
Dorig in the form of a code table consisting of frequent patterns. Subsequently,
transform this code table into a pattern-based generator that is used to generate
Dpriv.

It is hard to define an objective measure for the privacy requirement, as all
kinds of ‘sensitive information’ can be present in a database. We guarantee
privacy in two ways. Firstly, the probability that a transaction in Dorig is also
present in Dpriv should be small. Secondly, the more often a transaction occurs
in Dorig, the less harmful it is if it also occurs in Dpriv. This is encapsulated
in the Anonymity Score, in which transactions are grouped by the number of
times a transaction occurs in the original database (support):

92

5.3. Preliminaries

Definition 7. For a database Dpriv based on Do, define the Anonymity Score
(AS) as:

AS(Dpriv,Dorig) =
∑

supp∈Dorig

1
supp

P (t ∈ Dpriv|t ∈ Dsupporig)

In this definition, Dsupp is defined as the selection of D with only those
transactions having a support of supp. For each support level in Dorig, a score
is obtained by multiplying a penalty of 1 divided by the support with the
probability that a transaction in Dorig with given support also occurs in Dpriv.
These scores are summed to obtain AS. Note that when all transactions in
Dorig are unique (i.e. have a support of 1), AS is equal to the probability that
a transaction in Dorig also occurs in Dpriv.

Worst case is when all transactions in Dorig also occur in Dpriv. In other
words, if we choose Dpriv equal to Dorig, we get the highest possible score
for this particular database, which we can use to normalise between 1 (best
possible privacy) and 0 (no privacy at all):

Definition 8. For a database Dpriv based on Dorig, define the Normalised
Anonymity Score (NAS) as:

NAS(Dpriv,Dorig) = 1− AS(Dpriv,Dorig)
AS(Dorig,Dorig)

To conform to the quality requirement, the frequent pattern set of Dpriv
should be very similar to that of Dorig. We will measure pattern-similarity
in two ways: 1) on database level through a database dissimilarity measure
(see Chapter 3) and 2) on the individual pattern level by comparing frequent
pattern sets. For the second part, pattern-similarity is high iff the patterns in
Dorig also occur in Dpriv with (almost) the same support. So:

P (|supppriv − supporig| > δ) < ε (5.1)

The probability that a pattern’s support in Dorig differs much from that in
Dpriv should be very low: the larger δ, the smaller ε should be. Note that this
second validation implies the first: only if the pattern sets are highly similar,
the code tables become similar, which results in low measured dissimilarity.
Further, it is computationally much cheaper to measure the dissimilarity than
to compare the pattern sets.

5.3 Preliminaries

In this chapter we discuss categorical databases, and therefore adopt slightly
different notation than in the previous chapters. A database D is a bag of

93

5. Data Generation for Privacy Preservation

tuples (or transactions) that all have the same attributes {A1, . . . , An}. Each
attribute Ai has a discrete domain of possible values Vi ∈ V.

The Krimp algorithm introduced in Chapter 2 playes a major role here.
No pruning strategy is applied in this chapter, since keeping all patterns in the
code table causes more diversity during data generation, as will become clear
later.

Krimp operates on itemset data, as which categorical data can easily be
regarded. The union of all domains ∪Vi forms the set of items I. Each transac-
tion t can now also be regarded as a set of items t ⊆ P(I). An itemset X ⊆ I
occurs in a transaction t ∈ D iff X ⊆ t. The support of X in D is the number
of transactions in the database in which X occurs. Speaking in market basket
terms, this means that each item for sale is represented as an attribute, with
the corresponding domain consisting of the values ‘bought’ and ‘not bought’.

Further, in this work we use the database dissimilarity measure DS in-
troduced in Chapter 3. Recall that two databases are deemed very similar
(possibly identical) iff the score is 0, higher scores indicate higher levels of
dissimilarity. As the code tables consist of frequent patterns, it is especially
good at measuring the pattern similarity on a database level, as experiments
in Chapter 3 confirmed. We will therefore use it in our experimental section to
quantify the differences between original and generated data, helping to verify
the quality requirement of the problem statement.

5.4 Krimp Categorical Data Generator

In this section we present our categorical data generation algorithm. We start
off with a simple example, sketching how the algorithm works by generating a
single transaction. After this we will detail the scheme formally and provide
the algorithm in pseudo-code.

Generating a transaction, an example
Suppose we need to generate a new transaction for a simple three-column cate-
gorical database. To apply our generation scheme, we need a domain definition
V and a Krimp code table CT , both shown in Figure 5.1.

We start off with an empty transaction and fill it by iterating over all
domains and picking an itemset from the code table for each domain that has
no value yet. We first want to assign a value for the first domain, V1, so we
have to select one pattern from those patterns in the code table that provide a
value for this domain. This subset is shown as selection CTV1 .

Using the usage frequencies of the code table elements as probabilities, we
randomly select an itemset from CTV1 ; elements with high usage occur more
often in the original database and are thus more likely to be picked. Here we

94

5.4. Krimp Categorical Data Generator

Code table
A1 A2

Domain definition
 = { V1 = { A, B }; V2 = { C, D }; V3 = { E, F } }

Selections

Usage CTV1 CTV2 CTV3

A 1 – –

A 3 –C

3 –B D

2 – –B

1 – –C

1 – –D

A3

2 –C F

1 – –E

1 – –F

Figure 5.1: Example for a 3–column database. Each usage frequency is Laplace
corrected by 1.

randomly pick ‘BD’ (probability 3/9). This set selects value ‘B’ from the first
domain, but also assigns a value to the second domain, namely ‘D’.

To complete our transaction we only need to choose a value for the third
domain. We do not want to change any values once they are assigned, as this
might break associations within an itemset previously chosen. So, we do not
want to pick any itemset that would re-assign a value to one of the first two
domains. Considering the projection for the third domain, CTV3 , we thus have
to ignore set CF(2), as it would re-assign the second domain to ‘C’. From the
remaining sets E(3) and F(3), both with usage 3, we randomly select one - say,
‘E’. This completes generation of the transaction: ‘BDE’. With different rolls
of the dice it could have generated ‘BCF’ by subsequently choosing CF(2) and
B(3), and so on.

Here we will detail our data generator more formally. First, define the
projection CTV as the subset of itemsets in CT that define a value for domain
V ∈ V. To generate a database, our categorical data generator requires four
ingredients: the original database, a Laplace correction value, a minsup value
for mining candidates for the Krimp algorithm and the number of transactions
that is to be generated. We present the full algorithm as Algorithm 8.

Generation starts with an empty database Dg (line 1). To obtain a code

95

5. Data Generation for Privacy Preservation

Algorithm 8 Krimp Categorical Data Generator
GenerateDatabase (D, laplace,minsup, numtrans) :

1: Dg ← ∅
2: CT ← Krimp(D, MineCandidates(D,minsup))
3: for each itemset X ∈ CT do
4: usageD(X) ← usageD(X) + laplace
5: end for
6: V ← domains from D
7: while |Dg| < numtrans do
8: Dg ← Dg ∪ { GenerateTransaction(CT,V) }
9: end while
10: return Dg

GenerateTransaction (CT,V) :
11: t← ∅
12: while V 6= ∅ do
13: V ← a random element from V
14: X ← PickRandomItemSet(CTV)
15: t← t ∪X
16: for each domain W for which X has a value do
17: CT ← CT \ CTW
18: V ← V \W
19: end for
20: end while
21: return t

PickRandomItemSet (CT) :
22: weights← { usageD(X) | X ∈ CT }
23: X ← WeightedSample(weights, CT)
24: return X

table CT , the Krimp algorithm is applied to the original database D (2). A
Laplace correction laplace is added to all elements in the code table (lines 3
and 4). Next, we return the generated database when it contains numtrans
transactions (lines 7 to 10).

Generation of a transaction is started with an empty transaction t (line 11).
As long as V is not empty (12), our transaction is not finished and we continue.
First, a domain V is randomly selected (13). From the selection CTV , one
itemset is randomly chosen, with probabilities defined by their relative usage
frequencies (14). After the chosen set is added to t (15), we filter from CT
all sets that would redefine a value - i.e. those sets that intersect with the
definitions of the domains for which t already has a value (lines 16 and 17).

96

5.5. Experiments

Further, to avoid reconsideration we also filter these domains from V (18).
After this the next domain is picked from V and another itemset is selected;
this is repeated until V is empty (and t thus has a value from each domain).

Note that code table elements are treated fully independently, as long as
they do not re-assign values. Correlations between dimensions are stored ex-
plicitly in the itemsets and are thus taken into account implicitly.

Besides the original database and the desired number of generated transac-
tions, the database generation algorithm requires two other parameters: laplace
and minsup. Both fulfil an important role in controlling the amount of privacy
provided in the generated database, which we will discuss here in more detail.

A desirable parameter for any data generation scheme is one that controls
the data diversity and strength of the correlations. In our scheme this parame-
ter is found in the form of a Laplace correction. Before the generation process,
a small constant is added to the usage frequencies of the code table elements.
As code tables always contains all single values, this ensures that all values for
all categories have at least a small probability of being chosen. Thus, 1) a com-
plete transaction can always be generated and 2) all possible transactions can
be generated. For this purpose the correction needs only be small. However,
the strength of the correction influences the chance an otherwise unlikely code
table element is used; with larger correction, the influence of the original data
distribution is dampened and diversity is increased.

The second parameter to our database generation algorithm, minsup, has a
strong relation to the k-anonymity blend-in-the-crowd approach. The minsup
parameter has (almost) the same effect as k: patterns that occur less than
minsup times in the original database are not taken into account by Krimp.
As they cannot get in the code table, they cannot be used for generation either.
Particularly, complete transactions have to occur at leastminsup times in order
for them to make it to the code table. In other words, original transactions that
occur less often thanminsup can only be generated if by chance often occurring
patterns are combined such that they form an original transaction. As code
table elements are regarded independent, it follows that when more patterns
have to be combined, it becomes less likely that transactions are generated that
also exist in the original database.

5.5 Experiments

In this section we will present empirical evidence of the method’s ability to gen-
erate data that provides privacy while still allowing for high quality conclusions
to be drawn from the generated data.

97

5. Data Generation for Privacy Preservation

Table 5.1: Database characteristics and dissimilarities.

Krimp Dissimilarity (DS)
Dataset |D| |V| minsup Dpriv vs. Dorig Dorig internal
Chess (kr–k) 28056 7 1 0.037 0.104
Iris 150 5 1 0.047 0.158
Led7 3200 8 1 0.028 0.171
Letter recog 20000 17 50 0.119 0.129
Mushroom2 8124 22 20 0.010 0.139
Nursery 12960 9 1 0.011 0.045
Page blocks 5473 11 1 0.067 0.164
Pen digits 10992 17 50 0.198 0.124
Pima 786 9 1 0.110 0.177
Quest A 4000 8 1 0.016 0.077
Quest B 10000 16 1 0.093 0.223

Database characteristics, candidate minsup and dissimilarity measure-
ments (between original and generated datasets) for a range of datasets.
As candidates, frequent itemsets up to the given minimum support level
were used.

Experimental setup

In our experiments, we use a selection from the commonly used UCI repository
[33]. Also, we use two additional databases that were generated with IBM’s
Quest basket data generator [6]. To ensure that the Quest data obeys our
categorical data definition, we transformed it such that each original item is
represented by a domain with two categories, in a binary fashion (present or
not). Both Quest datasets were generated with default settings, apart from the
number of columns and transactions.

Characteristics of all used datasets are summarised in Table 5.1, together
with the minimum support levels we use for mining the frequent itemsets that
function as candidates for Krimp.

For all experiments we used a Laplace correction parameter of 0.001, an
arbitrarily chosen small value solely to ensure that otherwise zero-usage code
table elements can be chosen during generation. All experimental results pre-
sented below are averaged over 10 runs and all generated databases have the
same number of transactions as the originals, unless indicated otherwise.

98

5.5. Experiments

0.175 0.195 0. 215 0.235 0.255 0.275
0

50

100

150

200

250

Dissimilarity to full original database

N
um

be
r o

f d
at

ab
as

es

original

generated

Figure 5.2: Histogram of dissimilarities between samples (original and gener-
ated) and the full original database, Chess (kr–k).

Results

To quantify the likeness of the generated databases to their original counter-
parts, we use the database dissimilarity measure as described in Chapter 3.
To judge these measurements, we also provide the dissimilarity between the
original database and independent random samples of half the size from the
original database.

In Table 5.1 we show both these internal dissimilarity scores and the dis-
similarity measurements between the original and generated databases. To put
the reported dissimilarities in perspective, note that the dissimilarity measure-
ments between the classes in the original databases range from 0.29 up to 12
(see Chapter 3). The measurements in Table 5.1 thus indicate clearly that the
generated databases adhere very closely to the original data distribution; even
better than a randomly sampled subset of 50% of the original data captures
the full distribution.

To show that the low dissimilarities for the generated databases are not
caused by averaging, we provide a histogram in Figure reffig:chessdissimhist
for the Chess (kr–k) dataset. We generated thousand databases of 7500 trans-
actions, and measured the dissimilarity of these to the original database. Like-
wise, we also measured dissimilarity to the original database for equally many
and equally sized independent random samples. The peaks for the distance
histograms lie very near to each other at 0.21 and 0.22 respectively. This and

99

5. Data Generation for Privacy Preservation

chess (kr-k) ir is led7 letRecog nursery page
Blocks

penDigits pima

Dataset

D
is

si
m

il
ar

it
y

uncorrelated

correlated

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Figure 5.3: Dissimilarity scores between generated (with and without correla-
tions) and original databases.

the very similar shapes of the histograms confirm that our generation method
samples databases from the original distribution.

Turning back to Table 5.1, we notice that databases generated at higher
values of the minsup parameter show slightly larger dissimilarity. The effect
of this parameter is further explored in Figures 5.3 and 5.4. First, the bar
diagram in Figure 5.3 shows a comparison of the dissimilarity scores between
uncorrelated and correlated generation: uncorrelated databases are generated
by a code table containing only individual values (and thus no correlations be-
tween domains can exist), correlated databases are generated using the minsup
values depicted in Table 5.1 (at which the correlations in the data are captured
in the patterns in the code table). We see that when generation is allowed to
take correlations into account, the generated databases are far more similar to
the original ones.

Secondly, the graph in Figure 5.4 shows the dissimilarity between the orig-
inal Pen digits database and databases generated with different values for
minsup. As expected, lower values ofminsup lead to databases more similar to
the original, as the code table can better approximate the data distribution of
the original data. For the whole range of generated databases, individual value
frequencies are almost identical to those of the original database; the increase
in similarity is therefore solely caused by the incorporation of the right (type
and strength of) correlations.

100

5.5. Experiments

0 1000 2000 3000 4000 5000 6000
0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Support

D
is

si
m

il
ar

it
y

Figure 5.4: Dissimilarity between generated database (at different minsups)
and the original database for Pen digits.

Now that we have shown that the quality of the generated databases is very
good on a high level, let us consider quality on the level of individual patterns.
For this, we mined frequent itemsets from the generated databases with the
same parameters as we did for candidate mining on the original database. A
comparison of the resulting sets of patterns is presented in Table 5.2. We
report these figures for those databases for which it was feasible to compute
the intersection of the frequent pattern collections.

Large parts of the generated and original frequent pattern sets consist of
exactly the same items sets, as can be seen from the first column. For exam-
ple, for Led7 and Nursery about 90% of the mined itemsets is equal. In the
generated Pen digits database a relatively low 25% of the original patterns are
found. This is due to the relatively high minsup used: not all correlations
have been captured in the code table. However, of those patterns mined from
the generated database, more than 90% is also found in the original frequent
itemset collection.

For itemsets found in both cases, the average difference in support between
original and generated is very small, as the second column shows. Iris is a
bit of an outlier here, but this is due to the very small size of the dataset.
Not only the average is low, standard deviation is also small: as can be seen
from Figure 5.5, almost all sets have a very small support difference. The
generated databases thus fulfil the support difference demands we formulated

101

5. Data Generation for Privacy Preservation

Table 5.2: Frequent pattern set comparison.

% equal % diff in supp % supp new
Dataset itemsets equal itemsets itemsets
Chess (kr–k) 71 0.01 0.01
Iris 83 1.69 0.80
Led7 89 0.14 0.06
Nursery 90 0.04 0.03
Page blocks 75 0.06 0.02
Pen digits 25 0.50 0.59
Pima 60 0.30 0.14

Comparison between the frequent itemset collections mined on the orig-
inal and generated data. Shown are, per dataset, the percentage of
itemsets in both collections. For these itemsets, the average difference
in relative support. For the itemsets only found in the generated data,
their average relative support.

in Equation 5.1.
The third column of Table 5.2 contains the average supports of itemsets

that are newly found in the generated databases; these supports are very low.
All this together clearly shows that there is a large pattern-similarity, thus
showing a high quality according to our problem statement.

However, this quality is of no worth if the generated data does not also
preserve privacy. To measure the level of provided anonymity, we calculate
the Normalised Anonymity Score as given by Definition 8. These scores are
presented in Table 5.3.

As higher scores indicate better privacy, some datasets (e.g. Mushroom,
Pen digits) are anonymised very well. On the other hand, other datasets (Page
blocks, Quest) do not seem to provide good privacy. As discussed in Section 5.4,
the minsup parameter of our generation methods doubles as a k-anonymity
provider.

This explains that higher values for minsup result in better privacy, as the
measurements for Letter recognition, Mushroom and Pen digits indeed show.
Analogously, the (very) low minsup values used for the other databases result
in lower privacy (aside from data characteristics to which we’ll return shortly).

To show the effect of minsup in action, as an example we increase the
minsup for the Chess database to 50. While the so-generated database is
still very similar to the original (dissimilarity of 0.19), privacy is considerably
increased - which is reflected by a Normalised Anonymity Score of 0.85. For
further evidence of the k-anonymity obtained, we take a closer look at Pen

102

5.5. Experiments

−0.015 −0.010 −0.005 0.000 0.005 0.010 0.015
0

50

100

150

200

250

300

350

400

Frequent itemset support di�erence (%)

N
um

be
r o

f s
et

s

Figure 5.5: Difference in support, supp(Dpriv)−supp(Dorig), for identical item-
sets in generated and original Led7.

Table 5.3: Normalised Anonymity Scores.

Dataset NAS
Chess (kr–k) 0.70
Iris 0.28
Led7 0.34
Letter recognition 0.69
Mushroom 0.91
Nursery 0.51
Page blocks 0.23
Pen digits 0.78
Pima 0.36
Quest A 0.16
Quest B 0.19

103

5. Data Generation for Privacy Preservation

1 2 3 4 5 6 7 8
0. 0

0. 1

0. 2

0. 3

0. 4

0. 5

0. 6

0. 7

0. 8

0. 9

1. 0

Average number of sets to generate a transaction

N
or

m
al

iz
ed

 A
no

ny
m

it
y

Sc
or

e

Iris

Chess

PenDigits

Figure 5.6: Average number of patterns used to generate a transaction versus
Normalised Anonymity Score, for all datasets in Table 5.1.

digits, for which we use a minsup of 50. Of all transactions with support < 50
in the generated database, only 3% is also found in the original database with
support < 50. It is thus highly unlikely that one picks a ‘real’ transaction from
the generated database with support lower than minsup.

Although not all generated databases preserve privacy very well, the results
indicate that privacy can be obtained. This brings us to the question when
privacy can be guaranteed. This not only depends on the algorithm’s parame-
ters, but also on the characteristics of the data. It is difficult to determine the
structure of the data and how the parameters should be set in advance, but
during the generation process it is easy to check whether privacy is going to be
good.

The key issue is whether transactions are generated by only very few or
many code table elements. In Figure 5.6 we show this relation: for each dataset
in Table 5.1, a cross marks the average number of itemsets used to generate
a single transaction and the Normalised Anonymity Score. In the top-right
corner we find the generated databases that preserve privacy well, including
Pen digits and Letter recognition. At the bottom-left reside those databases
for which too few elements per transaction are used during generation, leading
to bad privacy; Quest, Page blocks and Led7 are the main culprits. Thus, by
altering the minsup, this relation allows for explicit balancing of privacy and
quality of the generated data.

104

5.6. Discussion

5.6 Discussion

The experimental results in the previous section show that the databases gen-
erated by our Krimp Categorical Data Generator are of very high quality;
pattern similarity on both database level and individual pattern level is very
high. Furthermore, we have shown that it is possible to generate high quality
databases while privacy is preserved. The Normalised Anonymity Scores for
some datasets are rather high, indicating that hardly any transactions that
occur few times in the original database also occur in the generated database.
As expected, increasing minsup leads to better privacy, but dissimilarity re-
mains good and thus the trade-off between quality and privacy can be balanced
explicitly.

A natural link between our method and k-anonymity is provided by the
minsup parameter, of which we have shown that it works in practice. While
we haven’t explored this parameter in this work, it is also possible to mimic l-
diversity, as in our method the laplace parameter acts as diversity control. The
higher the Laplace correction, the less strong the characteristics of the original
data are taken into account (thus degrading quality, but increasing diversity).
Note that one could also increase the Laplace correction for specific domains or
values, thereby dampening specific (sensitive) correlations - precisely the effect
l-diversity aims at.

To obtain even better privacy, one can also directly influence model con-
struction: for example, by filtering the Krimp candidates prior to building
the code table. Correlations between specific values and/or categories can be
completely filtered. If correlations between values A and B are sensitive, then
by removing all patterns containing both A and B from the candidate set, no
such pattern can be used for generation.

From Figure 5.6 followed that the number of patterns used to generate a
transaction greatly influences privacy: more elements leads to higher anonymity.
In the same line of thought, the candidate set can be filtered on pattern length;
imposing a maximum length directly influences the number of patterns needed
in generation, and can thus increase the provided anonymity.

The average number of patterns needed to generate a transaction is a good
indication of the amount of anonymity. We can use this property to check
whether parameters are chosen correctly and to give a clue on the characteristics
of the data. If already at high minsup few patterns are needed to encode a
transaction, and thus hardly any ‘sensitive’ transactions occur, the database is
not ‘suited’ for anonymisation through generation.

Reconsidering our problem statement in Section 5.2, the Krimp generator
does a good job as solution for this PPDM problem. The concrete demands
we posed for both the quality and privacy requirements are met, meaning that
databases generated by our method are privacy and quality preserving as we
interpreted this in our problem statement. Generating new data is therefore a

105

5. Data Generation for Privacy Preservation

good alternative to perturbing the original data.
Our privacy-preserving data generation method could be well put to practice

in the distributed system Merugu and Ghosh [94] proposed: to cluster privacy-
preserving data in a central place without moving all the data there, a privacy-
preserving data generator for each separate location is to be built. This is
exactly what our method can do and this would therefore be an interesting
application. As the quality of the generated data is very high, the method
could also be used in limited bandwidth distributed systems where privacy is
not an issue. For each database that needs to be transported, construct a
code table and communicate this instead of the database. If precision on the
individual transaction level is not important, new highly similar data with the
same characteristics can be generated.

In this chapter, we generated databases of the same size as the original, but
the number of generated transactions can of course be varied. Therefore, the
method could also be used for up-sampling. Furthermore, it could be used to
induce probabilities that certain transactions or databases are sampled from
the distribution represented by a particular code table.

5.7 Conclusions

We introduce a pattern-based data generation technique as a solution to the
privacy-preserving data mining problem in which data needs to be anonymised.
Using the MDL-based Krimp algorithm we obtain accurate approximations of
the data distribution, which we transform into high-quality data generators
with a simple yet effective algorithm.

Experiments show that the generated data meets the criteria we posed in the
problem statement, as privacy can be preserved while the high quality ensures
that viable conclusions can still be drawn from it. The quality follows from
the high similarity to the original data on both the database and individual
pattern level. Anonymity scores show that original transactions occurring few
times only show up in the generated databases with very low probability, giving
good privacy.

Preserving privacy through data generation does not suffer from the same
weaknesses as data perturbation. By definition, it is impossible to reconstruct
the original database from the generated data, with or without prior knowledge.
The privacy provided by the generator can be regulated and balanced with the
quality of the conclusions drawn from the generated data. For suited data, the
probability of finding a ‘real’ transaction in the generated data is extremely
low.

106

CHAPTER 6

Krimp Minimisation for Missing
Data Estimation

Many data sets are incomplete. For correct analysis of such data, one can ei-
ther use algorithms that are designed to handle missing data or use imputation.
Imputation has the benefit that it allows for any type of data analysis. Obvi-
ously, this can only lead to proper conclusions if the provided data completion
is both highly accurate and maintains all statistics of the original data.

In this chapter, we present three data completion methods that are built on
the MDL-based Krimp algorithm. Here, we also follow the MDL principle, i.e.
the completed database that can be compressed best, is the best completion
because it adheres best to the patterns in the data.

By using local patterns, as opposed to a global model, Krimp captures
the structure of the data in detail. Experiments show that both in terms of
accuracy and expected differences of any marginal, better data reconstructions
are provided than the state of the art, Structural EM.1

1 This chapter is an extended, edited, version of work published as [122]:
Vreeken, J., Siebes, A. (2008) Filling in the Blanks – Krimp Minimisation for Missing Data.
In Proceedings of the ICDM’08, pages 1067-1072.

107

6. Krimp Minimisation for Missing Data Estimation

6.1 Introduction

Many data sets are incomplete. Whether dealing with surveys, DNA micro
arrays or medical data, missing values are commonplace. However, properly
dealing with missing values remains an open problem in data analysis. While
some specialised algorithms exist that are designed to handle missing data,
many are not, and can at most ignore missing values. From statistics, we
know [55] this leads to biases in the outcome of the analysis.

There are two ways to properly analyse incomplete data:

• Using specialised algorithms designed to handle missing data

• Completing the data by imputation

Of these two, imputation has the practical advantage that one can analyse the
completed database using any tool or method desired. Obviously, this does
require the imputation to be as accurate as possible. That is, all statistics that
one computes from the completed database should be as close as possible to
those of the original data. The problem of imputation is thus: complete the
database as well as possible.

However, determining what is ‘good’ cannot just be measured through ac-
curacy: only for 100% correct estimations we know for sure that all statistics
are maintained. In this chapter we consider 0/1 databases in particular and
categorical databases in general. This allows us to properly validate the qual-
ity of a completed database in the following manner: we compare the support
of a random itemset in the original (complete) database with its support in
the completed database. The rationale is as follows. Analysing binary data is
largely based on counting. If the support of all itemsets are correct, all counts
will be correct. So, if for random itemsets that difference in support is nil, we
know that all counts are identical. Consequently, all statistics computed on the
completed database will be correct.

To achieve such high quality imputation we use the practical variant of
Kolmogorov complexity, MDL (minimum description length), as our guiding
principle: the completed database that can be compressed best is the best
completion. The driving thought behind this approach is that a completion
should comply to the local patterns in the database: not just filling in what
globally would lead to the highest accuracy. By taking into account how specific
values co-occur locally, not only the global statistics on the data will be correct
but also those measured on the local level.

We approximate this best result using KM, which stands for Krimp Min-
imisation. It is an iterative approach in which each successive completion has
a lower complexity as measured through the compressibility of the data. KM
is built on the MDL-based Krimp algorithm (see Chapter 2), that provides

108

6.2. The Problem

high quality data descriptions through compression of the data using frequent
itemsets.

Most good algorithms for missing data first estimate a model on the data.
Structural EM [45] is a good example of this. Within the iterative EM pro-
cess the learning of a Bayes net is integrated. This leads to very good ap-
proximations of the networks underlying the data, as well as state of the art
imputations.

KM is different in that it looks at the local patterns in the data, rather
than a building global model; such local patterns are often smoothed out from a
global stance. The experiments show that the local approach is indeed superior
to the global approach, both in terms of accuracy and quality of the completed
databases.

6.2 The Problem

Preliminaries
As in this chapter we have to determine whether items are present or not, i.e.
whether their value is 0 or 1, we have to introduce some further notation.

Let I = {I1, . . . , In} be a set of binary (0/1 valued) attributes. That is, the
domain Vi of item Ii is {0, 1}. A transaction (or tuple) over I is an element
of
∏
i∈{1,...,n} Vi. A database D over I is a bag of tuples over I. This bag is

indexed in the sense that we can talk about the i-th transaction. Further, we
follow the same notation as in Chapter 2.

Note that while we restrict ourself to binary databases in the description
of our problem and algorithms, there is a trivial generalisation to categorical
databases. In the experiments, we use such categorical databases.

In this chapter, the Krimp algorithm plays an important role. For an
introduction to MDL and Krimp, please refer to Chapter 2.

Missing data
A database D has missing data, if some of its values are denoted by ‘?’. The
?-values denote that we do not know what the actual value is, it might be a 0
or a 1. In the traditional market-basket example, this means, e.g. that we do
not know whether or not beer was bought in a given transaction.

The literature, see, e.g. [83, 112], distinguishes the following three different
types of missing data mechanisms.

MCAR which stands for missing completely at random. It means that the
fact that a data value is missing does not depend on any of the values in
the transaction, including itself.

109

6. Krimp Minimisation for Missing Data Estimation

MAR which stands for missing at random. This means that the fact that a
data value is missing may depend on one or more of the observed values,
it does not depend on the ‘true’ value of any of the missing values.

NMAR which stands for not missing at random. This means that the fact
that a data value is missing may depend on the true value of a missing
data value.

NMAR is a very problematic case. Without background knowledge, unbiased
analysis of the data is impossible. As the vast majority of the literature, we
restrict ourselves to MAR and MCAR only.

Database completion
Completing a database simply means that each question mark is replaced by a
definite value, i.e. a 1 or a 0. More formally we have the following definition.

Definition 9. Let DM and DC be two databases over I. Moreover, let DM
have missing data, whereas DC is complete, i.e. DC has no missing data.
Then, DC is a completion of DM iff

1. DM and DC both have k transactions, DM = {t1, . . . , tk} and DC =
{s1, . . . sk};

2. ∀i ∈ {1, . . . , k} ∀I ∈ I : πI(ti) ∈ {0, 1} → πI(ti) = πI(si)

An algorithm A that completes any incomplete database is called a completion
algorithm.

There are many possible completions of an incomplete database. In fact, if
DM has k unknown values, there are 2k completions. Clearly, not all comple-
tions are equally useful. To define quality measures, we assume that we know
the true complete database, denoted by DT . The most obvious quality measure
of a completion is accuracy.

Definition 10. Let DM ,DC , and DT be databases over I, such that DM is
incomplete, DT is the true completion of DM and DC is an arbitrary completion
of DM . Moreover, let m be the number of missing values in DM and n the
number of missing data values in DM on which DT and DC agree. The accuracy
of DC is given by

acc(DC) = n

m

Clearly, a 100% accurate completion of DM will allow for unbiased esti-
mates on DC . However, accuracy is a very strict measure. If DC is simply a
permutation of the rows of DT , the accuracy can be arbitrarily low. Whereas

110

6.2. The Problem

such a permutation still allows for unbiased estimates. Still, accuracy is the
most generally used quality measure for data completion [83].

Alternatively, we could define accuracy upto permutations. However, this
would yield its computation rather hard. It would require the search for a
permutation that yields maximal accuracy (in the strict sense as defined above).

To define a less strict quality measure, recall that the goal of a completion
is to allow unbiased statistics. That is, statistics or models computed on DC
should be as close as possible to their counterparts computed on DT . Most
statistical analysis of categorical data depends crucially on counts and sums.
Often subtables are created using selections and projections, and counts and
sums on these subtables are computed.

In the case of 0/1 data, selections correspond to itemsets; in fact we have
the following simple result.

Theorem 6. Let D be a complete database over I, let J ,K ⊆ I, with J ∩K =
∅, and let I ∈ I \ (J ∪ K). The number of 1’s I has in the subtable created by
the selection ∧

J∈J
J = 1 ∧

∧
K∈K

K = 0

on D, is given by

suppD(J ∪ {I})− suppD(J ∪ K ∪ {I})

Similarly, the number of 0’s for I is given by

suppD(J)− suppD(J ∪ K ∪ {I})

Proof. A transaction t satisfies the selection if it has 1’s for all elements of J
and 0’s for all elements of K. In other words, it should be in the support of J ,
but not in the support of K.

Given that sums are counts on 1’s on 0/1 databases and that the above
theorem is invariant under suitable projections, we have the following corollary.

Corollary 7. Let DM ,DC , and DT be databases over I, such that DM is
incomplete, DT is the true completion of DM and DC is an arbitrary completion
of DM . If for all itemsets X ⊆ I,

suppDC (X) = suppDT (X)

then all counts and sums on project-select subtables on DC equal their counter-
part on DT .

With this result in mind, our new quality measure, we can measure how
good the support of itemsets in a completed database is.

111

6. Krimp Minimisation for Missing Data Estimation

Definition 11. Let DM ,DC , and DT be databases over I, such that DM is
incomplete, DT is the true completion of DM and DC is an arbitrary completion
of DM . Moreover, let ε, δ ∈ R. DC is (ε, δ)-correct if for a random (frequent)
itemset X

P (|suppDT (X)− suppDC (X)| > ε) ≤ δ

In other words, the support of itemsets on (ε, δ)-correct completions are
almost always close to the correct value. The lower ε and δ are, the better
the completion is. As an aside, note that (ε, δ)-correctness is invariant under
permutations; the sum is a commutative operator.

There is a simple relation between accuracy and (ε, δ)-correctness, as given
by the following theorem.

Theorem 8. Let DM ,DC , and DT be databases over I, such that DM is in-
complete, DT is the true completion of DM and DC is an arbitrary completion
of DM . If DC is (0, 0)-correct, then there exists a permutation σ of the rows of
DC such that σ(DC) = DT

Proof. Let ψ be a maximal injective partial function ψ : DT → DC such that
ψ(t) = t. Moreover, let s ∈ DC \ψ(DT). Let the pair (J ,K) be the partition of
I, such that s has value 1 for all items in J and value 0 for all items in K. This
means that s is in the support of J minus the support of K. Since the support
of all itemsets are equal on DC and DT , this means that we can extend ψ to
have s in its image. This contradicts maximality and, hence, DC \ ψ(DT) = ∅.
Thus ψ is a bijection between DT and DC .

Clearly, if a completion is 100% accurate, it is also (0, 0)-correct. If (0, 0)-
correctness is not attainable, the two measures differ. Due to the invariance of
(ε, δ)-correctness, it is a more flexible quality measure.

(ε, δ)-correctness is defined for a random itemset, whatever the support of
an itemset. Many of these itemsets will have a very low support, in fact,
the vast majority will have support 0. For statistical analysis, however, item
sets with a very low support are not very interesting. Statistics computed on
small data sets, including the frequency of an itemset, are not very stable.
Small pertubations to the database may cause large changes of these statistics.
Hence, for the purposes of subsequent statistical analysis it is better to have a
high (ε, δ)-correctness considering frequent itemsets only, rather than having a
high (ε, δ)-correctness considering all itemsets.

All frequent itemsets is, unfortunately, still a large space to sample from. It
is well-known that the set of all closed frequent item sets is often far smaller than
the set of all frequent itemsets. Moreover, for any frequent itemset X, there
is a closed frequent itemset Y such that the support of X equals the support
of Y . Hence, if we know that for the closed frequent itemsets suppDT (Y) ≈
suppDC (Y), then this also holds for the frequent itemsets.

112

6.3. Completion Algorithms

Given these observations, we sample the closed frequent itemsets to estimate
(ε, δ)-correctness in our experiments.

The completion problem
With these quality measures at hand we formalise our completion problem as
follows.

The Completion Problem:

Devise a completion algorithm A that yields an (ε, δ)-correct
completion for any incomplete database with ε and δ as low as pos-
sible.

We settle for as low as possible because there may not be enough information
in the database to derive the (0, 0)-correct completion. For example, if I has
only one item, the database has only one transaction and its value is missing.
Either {1} and {0} are possible, and there is no algorithm that will reliably
choose correctly. For all practical purposes, though, (0, 0) is well approximable.

6.3 Completion Algorithms

Normally, we paraphrase MDL as Induction by Compression. Another way to
paraphrase the MDL principle is: the better a model compresses the database,
the closer it approximates the underlying data distribution. The key point of
both MAR and MCAR is that they do not perturb this underlying distribution.
Hence, in the spirit of MDL, one can say: the best completion is the completion
that allows for the best compression.

A straightforward implementation of this idea, however, runs the risk of
surpressing the natural variation in the data. The more data that is missing,
the higher this risk becomes. How susceptible an algorithm is to this risk can be
analysed by estimating (ε, δ)-correctness. The more susceptible an algorithm
is, the worse the (ε, δ)-correctness will be.

Next, note that for DM with n missing binary values the search space
consists of 2n possible completions. Clearly, finding the best completion quickly
becomes infeasible, even for moderate amounts of missing values. Further, there
is no structure that we can exploit to prune this search space. Therefore, we
settle for heuristics that approximate the best compressable DC by making
local decisions.

We introduce three such completion algorithms, based on Krimp , in this
section. For the first two algorithms, Simple Completion and Krimp Comple-
tion, we assume that there is enough complete data to allow Krimp to discover

113

6. Krimp Minimisation for Missing Data Estimation

good code tables. Moreover, Krimp Completion uses randomisation to min-
imise the risk of variation surpression. The third algorithm, called Krimp Min-
imisation, does no longer rely on the assumption that there is enough complete
data.

Simple Completion

A simple way to impute a missing value is using the maximal likelihood esti-
mator. For Krimp this reduces to shortest encoded length. Let t ∈ DM be a
transaction with missing values and denote by C(t) the set of all its possible
completions. The Simple Completion algorithm SC replaces t by that element
of C(t) that has the shortest encoded length.

More precisely, let DM = Dc ∪ Dm such that all transactions in Dc are
complete, while all transactions in Dm are incomplete. The SC algorithm,
Fig. 9, first computes a code table CT , by running Krimp on Dc. Next, each
incomplete transaction by its shortest completion.

Algorithm 9 The Simple Completion (SC) Algorithm
SC(DM) :

1: CT ← Krimp (Dc)
2: for t ∈ Dm do
3: arg min

s∈C(t)
L(s | CT)

4: end for
5: return Dc ∪ Dm

Krimp Completion

By always choosing the most likely candidate, the SC algorithm may have a
detrimental effect on the support of some itemsets. Suppose, e.g. that the
encoded length of (1, 1) is slightly shorter than (1, 0). Then each occurrence of
(1, ?) will be replaced by (1, 1) by SC. This leads to an overestimate of the sup-
port of (1, 1) and an underestimate of the support of (1, 0). The Krimp Com-
pletion algorithm KC, see Fig. 10, remedies this by choosing an element of C(t)
with a chance proportional to its encoded length. More precisely, we again
assume that DM = Dc ∪ Dm as before. Again Krimp is first run on Dc. The
resulting code table CT defines a probability distribution PCT (t) on C(t) given
by:

PCT (t)(s) = 2−L(s|CT)∑
u∈C(t) 2−L(u|CT)

114

6.3. Completion Algorithms

The completion of t is chosen from C(t) according to this distribution. The
function Choice(C(t), CT) makes this random choice.

Algorithm 10 The Krimp Completion (KC) Algorithm
KC(DM) :

1: CT ← Krimp (Dc)
2: for t ∈ Dm do
3: t← Choice (C(t), CT)
4: end for
5: return Dc ∪ Dm

Krimp Minimisation

For KC to work, we need enough complete data for Krimp to compute a good
code table. If there is not enough complete data, the result of KC may be
arbitrarily bad. To handle such a lack, we take an EM-like [37] approach.

The Krimp Minimisation algorithm KM starts with a random comple-
tion of the incomplete database DM . Then it iterates through a number of
Krimp and KC steps. In the Krimp step it compresses the current complete
database. In the KC step it completes the incomplete database DM using the
code table computed in the Krimp step. This is continued as long as the total
encoded length of the completed database shrinks. The algorithm returns the
final completed database. It has the shortest encoded length of the considered
completions, hence the name of the algorithm.

Note that KM will always terminate. The total encoded size shrinks with
every step. Since the encoded size of any finite database is finite, KM can only
execute a finite number of iterations.

Algorithm 11 The Krimp Minimisation (KM) Algorithm
KM(DM) :

1: DC ← random completion of DM
2: do
3: CT ← Krimp (DC)
4: DC ← KC (DM)
5: while compressed size of DC has not yet converged
6: return DC

115

6. Krimp Minimisation for Missing Data Estimation

6.4 Related Work

Imputation has a long history. One of the first known examples, Hot Deck im-
putation [8], was employed by the US census bureau in the fifties. It replaces
missing records by random draws from complete records from the same local
area. As such, it may be regarded as a crude form of k nearest-neighbour impu-
tation [132]. Since, more advanced systems for editing survey data have been
developed, in particular for hierarchical demographic data. Examples include
GEIS and SPEER [76] for continuous and DISCRETE [29] and CANCEIS [10]
for discrete survey data. These systems all rely on nearest-neighbour algo-
rithms for imputation [21]. As such, they require a distance function on the
data, unlike parameter-free methods.

Regression, mean substitution and mean-mode [55] imputation have a greedy
nature that harms the variance in the completed data [8]. Using some random-
ness circumvents this, which is why both Multiple Imputation (MI) [110] and
Expectation Maximisation (EM) [37] are still the current state of the art.

To start with the latter, imputation through EM is the process of maximis-
ing the likelihood of the data given a distribution. Iteratively, it adapts the
model to the data and re-imputes it. EM has been shown to provide very ac-
curate probability estimations. Its model, however, has obviously to be chosen
according to the data. For categorical data the log-linear model may be used.
Still, by its exponential size in the number of attributes, this is only feasible for
datasets with only few variables [112]. Krimp Minimisation follows a similar
iterative approach. However, it optimises the compressed size of the database,
not its likelihood.

Integrating a structure learner into the EM process leads to even better
results. Structural EM (SEM) [44, 45] learns Bayes nets during the modeling
phases. SEM has been shown to provide high quality probability estimates,
and very good approximations of the original Bayes nets. However, it is com-
putationally expensive and thereby only feasible for moderately sized datasets.
A stark difference to our approach is that SEM learns a global Bayes network
on the data, whereas Krimp considers the data in more detail by using local
patterns.

Multiple imputation [110] states that the data should be imputed multiple
times, thus providing different datasets. It does not dictate which data com-
pletion algorithm should be used, though typically either by sampling from
predefined distributions [23] or by applying EM. The resulting datasets need
to be analysed individually, after which the results are aggregated. For many
data mining approaches this is non-trivial.

116

6.5. Experiments

Table 6.1: Statistics of the datasets used in the experiments.

Imputation accuracy (%)
Dataset |D| |I| minsup (%) random baseline

Alarm 5000 105 50.0 37.8 79.9
Chess (kr vs k) 28056 58 0.7 16.5 23.0
Led 7 3200 24 0 50.0 61.2
Letter recognition 20000 102 1.2 20.2 57.5
Mushroom 8124 119 1.2 28.8 57.6
Pen digits 10992 86 0.9 21.8 35.7
Tic–tac–toe 958 29 0 33.2 45.2
Wine 178 68 0 20.5 43.5

Shown are, per dataset, the number of transactions, the number of bi-
nary attributes and the relativeminsup threshold used to mine frequent
itemsets as Krimp candidates. minsup = 0 indicates that all frequent
itemsets, i.e. supp ≥ 1, were used. Imputation accuracies were attained
by randomly choosing an imputed value, as well as choosing the most
frequent of the possible values.

6.5 Experiments

In this section we empirically evaluate the performance of the three proposed
data completion methods. All results of the experiments in this section are
averaged over 10 independent runs, unless indicated otherwise. Further, in
these experiments we consider the case of 1 missing value per transaction, on
average. Again, unless indicated otherwise. The (ε, δ)-correctness is calculated
over the closed frequent itemset collection as mined on the complete test data.

Datasets

We use a range of data sets to validate our methods. From the widely used
UCI repository [33] we took seven databases. Further, for fair comparison to
the Bayesian Structural EM method, we generated data from the well-known
Alarm network. This data was generated using the GenInstance program, made
available by Nir Friedman in the LibB Bayes Network tool library [46].

The details for these data sets are depicted in Table 6.1. Apart from
their base statistics, we provide the imputation accuracies on MCAR data as
achieved by 1) choosing a random possible value and 2) the baseline estimator
that chooses the most frequent of the possible values.

117

6. Krimp Minimisation for Missing Data Estimation

Table 6.2: Imputation quality given complete training data.

%
miss.
values

MCAR
baseline SC KC

Dataset ε δ acc. δ acc. δ acc.
Alarm 2.7 0.1 39.1 79.9 4.2 84.0 5.5 80.0
Chess 14.3 0.4 50.2 23.0 1.1 28.3 0.5 25.4
Led7 12.5 0.2 43.0 61.2 3.1 85.9 2.8 80.8
Letter 5.9 0.1 26.0 57.6 0.2 70.1 0.0 67.1
Mushroom 4.3 0.5 30.3 57.6 0.0 76.9 0.0 74.7
Pen digits 5.9 0.04 82.1 35.7 5.3 70.0 5.4 67.3
Tic-tac-toe 10.0 0.5 10.0 45.2 0.0 84.9 0.0 82.8
Wine 7.1 1.1 6.0 43.5 3.0 53.0 3.0 51.9

MAR
SC KC
δ acc. δ acc.

Alarm 6.9 85.1 5.6 81.2
Chess 1.4 28.2 0.3 25.8
Led7 3.5 87.3 3.0 82.2
Letter 0.4 71.4 0.0 68.6
Mushroom 0.3 77.1 0.5 76.3
Pen digits 6.5 68.7 6.6 65.6
Tic-tac-toe 0.0 84.8 0.0 82.3
Wine 3.0 53.0 3.0 49.7

Missing values estimated using Simple Completion (SC) and Krimp
Completion (KC), trained on complete data, using 10-fold cross-
validation. For the (ε, δ)-measurements, ε was fixed, calculating δ per
imputed database. All values relative (%).

We use the closed frequent pattern set as candidates for Krimp. Being
generated from a Bayes net, the Alarm dataset contains no local structure.
The absence hereof leads to a gigantic explosion in the number of patterns;
hence we have to use a high minsup for this database.

118

6.5. Experiments

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

6% missing
12% missing
18% missing
24% missing

chess led7 letter mush pendigits ttt wine
-20

0

20

40

60

80

100

120

140

Dataset
R

el
at

iv
e

K
ri

m
p

-c
o

m
p

le
xi

ty
 (%

)

incomplete
completed

ε

δ

Figure 6.1: (left) (ε, δ)-correctness of Simple Completion on the Letter
Recognition dataset. 10 fold cross-validated, trained on complete data. One
missing value missing on average per transaction equals 5.9% missing data, 2
values 11.8%, 3 values 17.6% and 4 values 23.5%. ε in % (!). (right) Relative
difference in Krimp complexity for incomplete and KM-completed data.

Creating missing values
We consider two types of missing data: missing completely at random (MCAR)
and missing at random (MAR).

To create MCAR test data, we start with complete data. From it, for as
many missing values we want to create, transactions are independently uni-
formly sampled. From each, one value is uniformly chosen and removed. For
the MAR case, we use the class labels and the three-valued bp variable for
Alarm as the depending attributes. For each of their values, a probability ta-
ble was generated to indicate the chance of the other attributes being missing.
We sample over this table to remove values, while still choosing the target
transactions uniformly.

Sufficient complete data
First, we study how our methods perform provided with complete training data.
Here, we thus consider Simple Completion and Krimp Completion. This
experiment was set up using 10-fold cross validation. Leaving the training-data
undamaged, we created missing values in the test–folds.

The results of this experiment are presented in Table 6.2. The accuracy
scores of both our methods are much better than that of the baseline methods
(scores for the random chooser in Table 6.1). This is even more the case for

119

6. Krimp Minimisation for Missing Data Estimation

correctness: for all these databases the random estimator scores a 100% chance
of finding a marginal differing more than ε. Choosing the most frequent value is
a better strategy, but still scores up to 50% chance of finding incorrect counts.
Both SC and KC, however, do get very close to the optimal (0,0)–score.

Comparing between our two methods directly, we see that the greedy SC
acquires better accuracy scores, as expected. However, this comes at a surpris-
ingly slight cost on the (ε, δ)-correctness. Given sufficient complete training
data even the greedy method maintains the proper local variance of the data.
Both the SC and KC imputed data can be regarded statistically identical to the
original. This goes for both MCAR and MAR, for which no strong differences
in performance were found.

These experiments further show that there is no strong degradation of per-
formance for increasing amounts of missing data. To show this in more detail,
in the left hand side plot in Figure 6.1 we show a plot of the (ε, δ)-correctness of
Simple Completion of the Letter dataset for 6 to 24% missing data. While
the related accuracy scores only drop marginally (from 70.1 to 69.1), the at-
tained (ε, δ)-correctness is even more impressive. Even with almost a quarter
of the data missing, SC achieves (0.003, 0.01)-correctness.

Insufficient complete data
Second, we consider the problem for when no (sufficient) complete training
data is available. We therefore now employ Krimp Minimisation instead of
Krimp Completion.

The results of this set of experiments is presented in Table 6.3. If we first
look at the accuracy measurements, we notice that the imputation accuracies
are actually often higher than we saw just before. Through the (ε, δ)-correctness
we can see that no magic is going on, as for all datasets these scores have
actually decreased. Thus, through the incompleteness of the training data
both methods are hindered in grasping the true data distribution.

Further, we see that the greedy nature of SC expectedly leads to a decrease
in the data quality. For all datasets the accuracy provided by KM are only
slightly lower than SC. This small loss in accuracy is compensated for by a
strong gain in (ε, δ)-correctness. For KM, these scores are up to an order better
than SC and often approximate the scores attained on the complete training
data.

The right hand plot of Figure 6.1 shows further evidence of the data recon-
struction ability of KM. To compress the data with missing values, Krimp typ-
ically requires 30% more bits than it does to encode the original data. Clearly,
the missing values refrain it from encoding using the most appropriate pat-
terns. However, through iterative imputation, KM is able to approximate the
Krimp complexity of the original data within a single percent. As noise is
canceled, the KM-imputed data has slightly lower complexity than the unseen

120

6.5. Experiments

Table 6.3: Imputation quality measurements.

%
miss.
values

MCAR MAR
SC KM SC KM

Dataset ε δ acc. δ acc. δ acc. δ acc.
Alarm 2.7 0.7 16.4 84.0 3.0 82.5 17.3 85.7 5.4 83.6
Chess 14.3 0.1 15.8 35.4 3.6 33.7 18.8 32.7 4.2 28.2
Led7 12.5 1.0 32.7 72.7 1.2 79.2 17.2 82.8 1.2 81.1
Letter 5.9 0.8 16.4 64.2 4.8 61.9 14.2 67.1 5.9 65.3
Mushroom 4.3 0.5 4.4 76.3 4.1 74.2 4.1 74.5 0.3 70.9
Pen digits 5.9 0.1 8.8 66.6 3.8 67.2 11.8 64.6 5.3 65.7
Tic–tac–toe 10.0 0.5 3.6 50.5 2.7 46.4 5.2 47.6 3.7 42.3
Wine 7.1 1.1 5.3 55.2 4.9 54.6 6.9 50.3 5.1 48.8

Missing values estimated using Simple Completion (SC) and Krimp
Minimisation (KM), trained on incomplete data. For the (ε, δ)-
measurements, ε was fixed, calculating δ per imputed database. All
values relative (%).

original.
These experiments also showed that KM rapidly converges to this approx-

imate original complexity: only three iterations were required for six of the
datasets, two more for the data on Mushroom edibility. Further, we noticed
that while KM is nondeterministic in initialisation and imputation, the result-
ing accuracies, correctness and data complexities are all virtually equal.

Comparing to SEM
Now that we have verified that KM provides good data completions, we will
compare it to the state of the art in imputation: Bayes Structural EM (SEM)
[45]. Structural EM incorporates the learning of a Bayes net on within the
EM [37] process. Iteratively it is learned and used to re-impute the data, until
the process converges.

In order to learn Bayes Nets on incomplete training data, we used Fried-
man’s publicly available implementation of Structural EM [46]. Its search pro-
cess can be initialised in various ways, here we used initialisation with random
trees. Other settings were explored, but no significant differences in perfor-
mance were found. For the actual inference on these Bayes nets for the missing
values, we used the Bayes Network Toolbox for Matlab (BNT) [99]. As both
learning the Bayes nets and inference are computationally expensive, we do not

121

6. Krimp Minimisation for Missing Data Estimation

Table 6.4: Imputation quality measurements for MCAR and MAR test data.

%
miss.
values

MCAR MAR
KM SEM KM SEM

Dataset ε δ acc. δ acc. δ acc. δ acc.
Alarm 2.7 0.5 6.7 82.5 15.2 80.9 8.0 83.6 37.8 82.5
Chess 14.3 0.1 4.1 33.7 24.5 23.5 4.2 28.2 33.2 22.7
Led 7 12.5 0.5 0.9 79.2 2.6 76.1 0.8 81.1 2.3 79.1
Tic–tac–toe 10.0 1.0 0.2 46.4 3.1 36.3 0.4 42.3 3.9 41.4
Wine 7.1 1.6 4.9 54.6 7.9 46.1 1.1 48.8 12.8 27.5

Missing values estimated using Krimp Minimisation (KM) and
Structural EM (SEM), trained on incomplete data. For the (ε, δ)-
measurements, ε was fixed, calculating δ per imputed database. All
values relative (%).

consider all datasets in this comparison.
The results of this experiment are presented in Table 6.4. From it, we first

notice that KM attains higher imputation accuracies than SEM for three out of
the five datasets. However, the general quality of the KM imputed databases, as
measured through the (ε, δ)-correctness scores, is quite dramatically better than
the Bayes net driven SEM approach. This shows that the detail provided by the
local-pattern based Krimp code tables allow for imputation that adheres much
better to the local statistics of the original data than possible from a global
model. Even for the Alarm dataset (with relatively few missing values), SEM
is unable to score a win. Although this dataset contains no local structure,
and we were forced to use high minsup values for Krimp, the resulting code
tables still allow for better reconstruction of the original data than with the
SEM induced global Bayes Net model.

Similar to the previous experiments, no strong trend presents itself when
we compare between MCAR and MAR. For KM accuracy is harmed slightly on
average, but its (ε, δ)-correctness remains stable or even improves. For SEM,
however, we do see that for both Alarm and Chess the data quality does suffer
significantly.

6.6 Discussion

The experimental results of our methods show that compression is a viable
approach to the data completion problem. All three our parameter-free data

122

6.7. Conclusions

completion algorithms show that approximating the best compressible com-
pleted database leads to high quality imputation.

Provided with undamaged training data, SC provides highly accurate esti-
mates. The method was shown to be robust: even up to 24% missing values,
both accuracy and (ε, δ)-correctness of the completed data are very high.

For the realistic case of only insufficient complete training data being avail-
able, Krimp Minimisation is the right choice for a data completion algorithm.
It finds good approximations of the best compressible completed database, and
is shown to provide both provide high accuracy and very good (ε, δ)-scores.
Further, the complexity of the original data is approximated within a single
percent.

Compared to the state of the art in missing value estimation, Structural
EM, the completions that KM offers provide both higher accuracy and adhere
better to all count statistics of the original data.

Here we only consider the code tables from the Krimp compressor. As
the proposed methods operate straightforwardly, it is possible to employ other
compression schemes instead, for instance to better suit other data types.

6.7 Conclusions

In this chapter we considered the problem of high quality imputation of missing
data. To test this objectively we propose (ε, δ)-correctness to measure the
difference between two databases in terms of count statistics.

We presented three Krimp–based methods for imputation of incomplete
datasets. All follow the MDL–principle: the completed database that can
be compressed best is the best completed database. This, because then the
imputations adhere to the local patterns that are present in the database,
instead of only keeping its global statistics correct.

Both the greedy Simple Completion and randomised Krimp Completion
offer high performance when sufficient complete training data is available. By
minimising the compressed size of the imputed data, Krimp Minimisation
performs evenly well when no complete data is available. Besides providing high
accuracy, all three completion algorithms render imputations that particularly
respect the variance of the original data.

Our methods consider local patterns in the data, rather than a global model;
such local patterns are often smoothed out from a global stance. The experi-
ments show that the local approach is indeed superior to the global approach,
both in terms of accuracy and quality of the completed databases.

123

CHAPTER 7

Low-Entropy Set Selection

Most pattern discovery algorithms easily generate very large numbers of
patterns, making the results impossible to understand and hard to use. Re-
cently, the problem of instead selecting a small subset of informative patterns
from a large collection of patterns has attracted a lot of interest. In this chapter
we present a succinct way of representing data on the basis of itemsets that
identify strong interactions.

This new approach, LESS, provides a more powerful and more general tech-
nique to data description than existing approaches. Low-entropy sets consider
the data symmetrically and as such identify strong interactions between at-
tributes, not just between items that are present. Selection of these patterns
is executed through the MDL-criterion. This results in only a handful of sets
that together form a compact lossless description of the data.

By using entropy-based elements for the data description, we can success-
fully apply the maximum likelihood principle to locally cover the data opti-
mally. Further, it allows for a fast, natural and well performing heuristic.
Based on these approaches we present two algorithms that provide high-quality
descriptions of the data in terms of strongly interacting variables.

Experiments on these methods show that high-quality results are mined:
very small pattern sets are returned that are easily interpretable and under-
standable descriptions of the data, and can be straightforwardly visualized.
Swap randomization experiments and high compression ratios show that they
capture the structure of the data well.1

1 This work was originally published as [60]:
Heikinheimo, H., Vreeken, J., Siebes, A., Mannila, H. (2009) Low-Entropy Set Selection. In
Proceedings of the SDM’09, pages 569-579.

125

7. Low-Entropy Set Selection

7.1 Introduction

One of the central research themes in data mining has been the discovery
of frequently occurring patterns. Starting from frequent sets and association
rules [5], one of the key goals has been completeness in discovery: the task is
to find all patterns from a pattern class that satisfy certain conditions. This
goal is, in a way, a very useful one: from the answer we know exactly every
pattern that fulfils the condition.

The drawback is that the number of patterns returned is typically pro-
hibitively large. Generally, there are lots of patterns satisfying the conditions,
but many patterns convey roughly the same information about the data.

Recently, several authors have studied the pattern selection problem: given
a large set of patterns, find a small subset of informative patterns. Examples
of such work are [20,69,95,113,135]. These proposals all manage to reduce the
pattern explosion significantly and achieve massive reductions in the number
of patterns. However, whether these describe the data in full, or only partly,
has a strong influence on the number of selected patterns: respectively up to
hundreds, or only tens.

Lossy approaches, due to the small number of resulting patterns, allow for
very easy interpretation. However, they cannot explain the data in full detail
and may overlook important and interesting interactions. Lossless approaches,
on the other hand, typically result into slightly more patterns. While this
improved level of detail allows for thorough data analysis, interpreting or in-
specting these groups of patterns by hand can be more difficult.

In this chapter we provide a lossless method for succinct description of
datasets using low-entropy itemsets. Our approach obtains very small collec-
tions of informative patterns, typically in the order of tens of patterns, that
are both readable and provide intuitive descriptions of the data. The method
is inspired by two recent approaches: low-entropy sets [59] and the MDL-based
method Krimp (see Chapter 2).

Informally, a low-entropy set is a set X of variables such that the distribu-
tion of the data on these variables is highly skewed, i.e., has low entropy. For
example, consider a set X = {A,B,C,D,E} of binary variables. Assume further
that the data has 1000 rows where the values of these variables are (1, 0, 0, 1, 0),
and 2000 for which the values are (1, 0, 1, 0, 0), and that the frequencies of the
remaining 30 value combinations (25 in total) are all negligibly small. Together
these variables interact strongly, i.e. their values are strongly structured, and
resultantly the entropy of the dataset on the variables in X is small: for a
single row of the data we can code the values of the variables in X using only
few bits on average (about 0.9, in this case).

Low-entropy sets can be viewed as a stark generalization of frequent item-
sets, which just look for sets X such that there are sufficiently many rows that
have a 1 in each column of X. Unlike frequent itemsets, low-entropy sets are

126

7.1. Introduction

Species ...

Felis Sylvestris

Microt. Arvalis

Microt. Subter.

Lutra Lutra

Mustela Putor.

Cervus Elaphus

Dama Dama

Micromys Min.

Talpa Europ.

Glis Glis

Lepus Europ.

Arvicola Terres.

Apodem. Flavic.

Castor Fiber

Capreolus Capr.

Martes Martes

Sorex Araneus

Erinac. Europ.

Martes Foina

Neomys Fodiens

Sciurus Vulgaris

Clethrio. Glar.

Nycter. Proc.

LE
-S

et
 2

3

LE
-S

et
 1

...

Figure 7.1: Visualization of 23 sets (columns) that our method selected to
describe the occurrence interactions of 23 mammal species.

127

7. Low-Entropy Set Selection

symmetric with respect to 0 and 1. As above, they can locate subsets that
have just a few different dominant values. Therefore, they are very applica-
ble for analyzing dense data. However, as with frequent sets, the number of
low-entropy patterns can grow prohibitively large: for higher levels of entropy,
many more sets are found than is practical for analysis by hand.

The MDL-approach (see Chapter 2) to selecting pattern subsets is based on
the idea that the best subset of patterns is the one that compresses the data
best. It identifies the best collection of itemsets as the one that requires the
fewest bits to describe all of the data. For frequent itemsets, a transaction can
be described simply by telling which itemsets together (i.e. their union) form
the transaction.

For low-entropy sets this is less straightforward; to (re)construct a data
row, we have to identify both the low-entropy sets and their specific variable
values. For example, if a data row t would happen to have the combination
(1, 0, 1, 0, 0) on the variables of X, to describe t we can say that low-entropy set
X is to be used, with (1, 0, 1, 0, 0) as its value combination; as this combination
is so frequent, it can be encoded in only a few bits. However, opposed to
frequent itemsets, low-entropy sets can be used to describe any transaction:
there always is one instantiation that fits the row. We are therefore required
to use a fine-grained selection to determine which low-entropy set will be used
to encode what part of the data. Turning this to our advantage, we provide
two methods based on the maximum likelihood principle to optimally cover the
data locally.

Using these principled selection strategies, we employ the MDL criterion to
encode the whole data succinctly using low-entropy sets. As such, the method
requires only tens of patterns for a detailed lossless description of the full data.
Consequently, the outcome can be interpreted very easily.

As an example, consider Figure 7.1. It visualizes the results of our method
on a dataset concerning the geographical presence of mammal species. In this
picture, we show the low-entropy sets (the columns) that our method selected
to describe the interactions between the 23 species. These sets were selected
by our method out of the 67677 low-entropy patterns of entropy ≤ 3.3 bits.
Indeed, it is a compact set of species interactions that together well describe
the main essence of the data.

The reason why the data can be characterized by such a small number of
patterns is the fact that one low-entropy set may capture multiple interactions
at once for the same attribute set. Consider for instance the left–most column of
Figure 7.1, showing an interaction pattern between two Vole species (M. Arvalis
and M. Subterraneus) together with the predators Wild cat (F. Sylvestris) and
European Polecat (M. Putor.). Table 7.1 takes a closer look at the usage counts
of the individual variable combinations of the set as they are used to describe
the data. As the table suggests, relevant interactions involve several occurrence

128

7.1. Introduction

Table 7.1: Detailed view of how LESS uses a low-entropy set.

F
.

Sy
lv

es
tr

is

M
.

A
rv

al
is

M
.

Su
be

rr
an

eu
s

M
.

P
ut

or
.

counts
0 0 0 0 44
0 0 0 1 10
0 1 0 0 18
0 1 0 1 199
0 1 1 1 248
1 0 0 0 5
1 0 0 1 7
total # usage 531

Detailed view of how LESS uses the left-most low-entropy set of Fig-
ure 7.1 to encode the data. The set depicts major presence-interactions
of four mammal species.

combinations, as well as absence of the species. Hence, if the same interactions
would have to be described using regular itemsets many separate sets would be
required, instead of the single low-entropy set required here.

In this study we provide the methodological and algorithmic solutions nec-
essary to use the MDL framework for low-entropy set patterns. Experiments
show that the end result yields easily interpretable small collections of low-
entropy sets. The quality of the mined pattern groups is first verified through
compression. By swap randomization experiments we affirm that these sets
grasp the significant structure in the data. Further, we provide evidence that
these sets together describe multiple distributions by comparing them to the
cluster centroids of the data. In summary, the results show that our method
only requires as few patterns as lossy methods do to provide a high-quality
lossless description of the data.

The roadmap of this chapter is as follows. First we introduce some pre-
liminaries on low-entropy sets and how MDL can be used to select the most
interesting subset of low-entropy sets. In Section 7.3 we present the LESS al-
gorithm for Low Entropy Set Selection, as well as a principled way of encoding
the data locally optimally. Next, in Section 7.4 we empirically evaluate the
proposed method. Related studies are discussed in Section 7.5. We round up
with discussion and conclusions.

129

7. Low-Entropy Set Selection

7.2 Problem Definition

In this section we introduce preliminaries and notations used in subsequent
sections. As we regard the data 0/1 symmetric in this chapter, the notation
used here differs strongly from previous chapters.

Low-entropy sets
Let I be a set of 0–1 valued attributes. A transaction t over I is a binary
vector of length |I|. A dataset D is simply a bag of transactions, the number
of which is denoted by |D|. We denote attribute sets, i.e., subsets of I, by X
and Y . For singleton sets we omit the braces, e.g., we write A instead of {A}.

We use πA(t) to refer to the value of attribute A on row t (1 or 0). Given an
attribute set X, we denote by πX(t) the projection of the transaction t onto X.
In other words, πX(t) is a 0–1 vector of values πA(t) defined by the attributes
A ∈ X.

Let ΩX be the set { 0, 1 }|X| of all 0-1 vectors of length |X|. We call the
vectors i ∈ ΩX the instantiations of the attribute set X. We say that the
instantiation i fits transaction t iff i = πX(t). The probability pX(i) of an
instantiation i is the relative support in D of the attributes X having the value
of i. More formally,

pX(i) = |{t ∈ D | i = πX(t)}|
|D|

.

Or, simply put, the fraction of transactions in D where i fits. For readability,
we write p(i) wherever X is clear from the context.

The entropy of an attribute set X in D is

H (X) = −
∑
i∈ΩX

p(i) log2 p(i),

where 0 log2 0 is assigned the value of 0 by convention.
Entropy is a measure of skewness in the occurrence distribution of instanti-

ations of X. The lower the entropy, the more structured and more concentrated
the instantiations in the database are. From a pattern mining point of view,
attribute sets exhibitting structure in the form of low entropy can therefore be
considered interesting.

Definition 12. Given an entropy threshold ε, an attribute set X is a low-
entropy set (LE-set) in D if H (X) ≤ ε.

It is straightforward to show that low-entropy sets have a monotonicity
property. Say we combine attributes A and B into a set X. By definition,
H (X) is minimal iff X has no instantiations of lower probability than A or B

130

7.2. Problem Definition

separately. In other words, no value combination of A and B is more surprising
than any of the value combinations of A or B separately. This is only the case
if A and B are either exact copies or exact negatives, resulting in H (X) =
H (A) = H (B). Otherwise, if A and B disagree on one or more values we
have H (X) ≥ H (A) and H (X) ≥ H (B). For the low-entropy mining task this
monotonicity property allows to use e.g. a level-wise search in similar fashion
to that of frequent items [5]. For a formal proof, and more details on mining
low-entropy sets, see [59].

MDL for low-entropy sets
Like stated in Chapter 2, one can summarize the MDL approach to induction
by the slogan: the best model compresses the data best. For a short introduction
to the MDL principle, see Chapter 2, or refer to [52].

Constructing a compression scheme that is based on LE-sets is not trivial.
Unlike for itemsets, see Chapter 2, unambiguous decoding is impossible if only
the sets are encoded: we also have to identify which individual instantiations
are used. Here, we want to describe the data primarily in terms of low-entropy
sets, and are less interested in their value instantiations. Therefore those value
identifying codes should provide as little as possible bias to which LE-sets are
chosen, while at the same time the complexity of the model should be weighed
properly. This, we reach by encoding the sets and the instantiations separately.
Most importantly, we make the code lengths for the instantiations independent
from those of the LE-sets.

The basic idea is as follows: to describe a transaction t, we tell which LE-sets
and which instantiations are used to obtain the values πA(t) for each attribute
A. During compression a code table is induced, a two-column table containing
a list of LE-sets and the codes used to identify them. The codes come from a
prefix-code to allow for unambiguous decoding. The more often a set is used
to encode the transactions in the database, the shorter its associated code.

Example 9. Given a transaction t we code it by giving a sequence of LE-
sets and instantiations for these. As a simple example, consider the attributes
{ABCD} and a transaction t = {A,D} (i.e., the vector (1, 0, 0, 1)). This trans-
action can be described by the LE-sets {A,B} and {C,D} with instantiations
(1, 0) and (0, 1) respectively. Let the code associated with {A,B} be c1 and let
c2 be the code associated with {C,D}. The naïve way to store this would be
c1c2 for the coded transaction and ((1, 0), (0, 1)) as the indication of the values.
This last part is simply a representation of t as a binary vector. Although a
possible encoding, as it completely ignores any structure it is hardly a way to
compress.

So, we have to refine the encoding of the instantiations. Note that {(0, 0), (0, 1),
(1, 0), (1, 1)} is the set of instantiations of all two element LE-sets. Hence, one

131

7. Low-Entropy Set Selection

of these will be used whenever a two element LE-set is part of the cover of a
transaction. Therefore we assign a (prefix) code to each of these instantiations;
again, the more often an instantiation is used, the shorter its code. The codes
for instantiations are called indicators. Continuing the example, let l1 be the
code associated with (1, 0) and l2 the one with (0, 1). The transaction {A,D}
is then encoded by the pair of codes c1c2 and l1l2.

From the example follows that to compress transactions we require two code
tables. The first, the LE-set code table denoted by CTLE , is defined as a two-
column table of which the first column contains LE-sets and the second contains
their codes. Second, the indicator code table, denoted by CTI , is analogously
defined as a two-column table of which the first column contains indicators and
the second column the associated codes. The encoding of a database D with
this pair of code tables results in a pair of encodings. The first, DLE , contains
the codes from CTLE , the second, DI contains the codes from CTI .

As done in Chapter 2, we also require CTLE to contain at least the singleton
attribute sets, such that all possible transactions can be encoded using any valid
code table. Similarly, if the largest LE-set in CTLE contains n attributes, CTI
is defined to contain all possible indicators for one-element LE-sets up to those
for n-element LE-sets. That is, CTI will have 2n+1 − 1 entries.

Coding the transactions
To determine the appropriate code for the elements of both CTLE and CTI we
need to know how often an LE-set and its instantiations are used. That is, we
have to define which elements of CTLE are used to cover a transaction t and
which instantiations of those elements are used.

Informally, a cover function provides a set of non-overlapping LE-sets such
that they describe all attributes I of a transaction t of database D. We for-
malize this as follows:

Definition 13. A cover function is a function that given a LE-set code table
CTLE and an indicator code table CTI assigns to each transaction t a list of
pairs

(X, i) X ∈ CTLE , i ∈ CTI

such that the union of the instantiated LE-sets equals t. Slightly abusing nota-
tion, we write both X ∈ cover(CT, t) and i ∈ cover(CT, t) whenever (X, i) ∈
cover(CT, t).

Since the CTLE elements in the result of a cover function are non-overlapping,
cover only needs to return a list of CTLE elements. The associated indicators
can easily be reconstructed by considering this list and the transaction.

132

7.2. Problem Definition

The number of times a CTLE element X is used in the cover of a transaction
t ∈ D is called its usage frequency. The usage frequency of an indicator i ∈ CTI
is defined similarly:

usageCT (X) = |{t ∈ D | X ∈ cover(CT, t)}|
usageCT (i) = |{t ∈ D | i ∈ cover(CT, t)}|

The probability that X or i is used in the cover of a randomly selected trans-
action t is thus

P (X | D) = usageCT (X)∑
Y ∈CT usageCT (Y) ,

P (i | D) = usageCT (i)∑
j∈CT usageCT (j) .

To compress the database optimally, we use the Shannon code [53] for both
code tables. That means that the length (in bits) of the codes for X and i is

LD(code(X)) = − log(P (X | D)),
LD(code(i)) = − log(P (i | D)).

Note that we are only interested in the lengths of these codes, not the actual
codes themselves. Then, we can calculate the size of the encoded databases
DLE and DI , encoded respectively by CTLE and CTI , as

L(DLE | CTLE) =
∑

X∈CTLE

−usageCT (X) log(P (X | D)),

L(DI | CTI) =
∑
i∈CTI

−usageCT (i) log(P (i | D)).

The encoded size of the full database then is

L(D | CT) = L(DLE | CTLE) + L(DI | CTI).

For the two code tables, we already know the size of the codes, viz. LD(code(X))
and LD(code(i)) as defined above. To compute, respectively, the sizes of the
LE-sets and the indicators these codes stand for, we have to define how we
encode them.

For CTLE , we encode the LE-sets by what we define as the standard code
table ST , which is the simplest valid code table: the code table that only

133

7. Low-Entropy Set Selection

contains the singleton attribute sets. Hence, the size of CTLE is (ignoring
elements X ∈ CTLE with usageCT (X) = 0)

LD(CTLE) =
∑

X∈CTLE

LD(code(X)) + LD(codeST (X)).

For CTI , we simply use the bit-representation of the instantiations. That is,
the instantiation (0, 1) is represented by 01. We denote the bit-representation
of i ∈ CTI by bit(i). Note that if the largest LE-set in CTLE has n items, then∑

i∈CTI

bit(i) =
∑
j=1

nj2j = 2 + (n− 1)2n+1.

Hence, the size of CTI is

LD(CTI) =
∑
i∈CTI

LD(code(i)) + bit(i).

Then, we have as the total size for the code tables,

LD(CT) = LD(CTLE) + LD(CTI).

The formal problem statement
Now that all the details of MDL for LE-sets have been defined, we can formally
state our problem.

Let D be a transaction database, and cover a cover function.
Find the code tables CTLE and CTI minimizing the total encoded
size

L(D, CT) = L(D | CT) + LD(CT).

So, the actual problem is now to find the best code table. Note that given
CTLE and a cover function determining CTI is trivial.

Still, the search space we have to consider for this problem is huge. First,
it consists of all possible code tables CTLE : all possible subsets of P(I) that
contain at least the singleton sets I. So, there are

2|I|−|I|−1∑
k=0

(
2|I| − |I| − 1

k

)
possible code tables. In order to determine which one minimizes the total
encoded size, we have to consider these using every possible cover function.

134

7.3. Algorithms

This translates to using every possible cover order per transaction. Since there
are n! possible orders for a set of length n, the total size of the search space is

2|I|−|I|−1∑
k=0

((
2|I| − |I| − 1

k

)
× (k + |I|)!× |D|

)
.

In short, it is prohibitively large. To make matters worse, there is no useable
structure that allows us to prune this search space. Hence, we need to use
heuristics.

7.3 Algorithms

Our approach for finding the best possible code table can be divided into two
main important elements:

• transaction encoding phase, where a good compression for each transac-
tion (cover) is found using the patterns in the code table.

• the search strategy, which is the way in which the search space of all
possible pattern subsets is traversed to find a good code table.

The method follows the general framework of Chapter 2. However, we apply
very different technical solutions within the different parts of the approach. We
will discuss transaction encoding in the next Subsection and the search strategy
afterwards.

Transaction encoding
As discussed in Section 7.2, when encoding the database the task is to compress
the data as well as possible using only the LE-sets in the code table. This is
done by encoding each transaction with a set of patterns from the code table.
However, as pointed out in that section, an LE-set always has an instantiation
that can be used to describe a transaction. Therefore, there are often many
different ways (depending on the order in which we use sets from the code
table) that a transaction can be covered, and hence compressed.

Our strategy to select good covers for each transaction is to take advan-
tage of the statistical nature of low-entropy patterns and use the maximum
likelihood (ML) principle. The idea is to take the cover C that maximizes the
conditional probability p(t|C) (likelihood) of the transaction given all possible
covers. We define the likelihood of transaction t as follows:

Definition 14. Let t be a transaction and C a cover of t.

llh(t, C) =
∑
X∈C

log p(πX(t)) (7.1)

135

7. Low-Entropy Set Selection

is the log–likelihood of t given C.

For each transaction t, the task is then to find the optimal cover

C∗ = arg max
C

llh(t, C)

from the set of all possible covers, such that llh is maximized.
Maximum likelihood is a widely used and well principled way of selecting

between alternative models for the data. That is, in our case to choose between
different covers of a transactions. Moreover, the ML-principle has an intuitive
connection to the overall task of minimizing the total encoded length of the
data.

In more detail, the connection is as follows. First, let us consider a set of LE-
sets that form a cover C of some transaction t. In order for C to provide a good
compression of both this transaction and the whole of the data, the associated
codes should be as short as possible. Hence, both the LE-sets X ∈ C and the
instantiations πX(t) should be used as often as possible. Now, let’s assume
that for all the rest of the transactions in the data the instantiation πX(t) and
LE-set X ∈ C are used to cover every transaction where πX(t) fits, and that
the instantiation πX(t) is not used anywhere else. That is, more formally for
the case of the instantiation,

usageCT (πX(t)) = |D| · p(πX(t)),

where p(πX(t)) is the frequency of the transactions for which πX(t) fits. From
this it follows that the code length of πX(t) will be strictly proportional2 to its
negative log–likelihood. More formally,

L(code(πX(t))) ∝ −log usageCT (πX(t))
|D|

= − log p(πX(t)).

Therefore, optimizing equation 7.1 also optimizes the entire coding length of
transaction t. Assuming this for every transaction in the database, the encoding
size of the entire database will be proportional to the negative log–likelihood
of the data.

The above assumption will not strictly hold in every case. However, in
general patterns with instantiations of high likelihood (high support) are likely
to behave approximately like this and will consequently optimize the encoded
length of the data well.

2Notice that in Section 7.2 the probability P (i|D) is normalized with the usage frequencies
of all of the elements in CTI instead of the size of the data |D|. Hence, the code length is
proportionally but not exactly the same as the negative log–likelihood.

136

7.3. Algorithms

Finding the Best Cover

It is quite clear that finding an optimal cover for a transaction is NP-complete
[47] and hence exact solutions cannot be computed for large datasets. How-
ever, many covering problems are known to be well approximable using greedy
heuristics.

In this subsection, we first study covering a transaction optimally according
to the maximal likelihood principle, with an exhaustive search strategy using
pruning. In the next subsection, we discuss a greedy heuristic that can be
applied for larger datasets.

To compute the optimal cover for transaction t, we start with a code table
that is ordered on the per attribute likelihood addition. The idea is that given
a transaction t we assign to LE-set X ∈ CTLE a weight w(t,X) that is equal
to the per attribute addition in likelihood that X would give, if it were to be
added to the cover. More formally

w(t,X) = log
(
p(πX(t))

)
/|X|. (7.2)

Given this ordered code table, we need to enumerate all possible covers in
a depth first manner. We start from LE-set X with the largest weight w(t,X)
and greedily continue to add, non-overlapping, sets to the cover in decreasing
order; backtracking the search at each time when reaching a full cover.

By taking this order into account, we can cut the search space down con-
siderably using the following proposition.

Proposition 10. Consider covering transaction t with disjunct attribute sets
in strictly decreasing order according to the weight function w. Now, when at
the ith attribute set, already having covered attributes Y with cover CY , we
know that the resulting cover will have an apriori coding length of at most

llh(t, C) ≤ m · w(t,Xi) + llh(t, CY), (7.3)

where m is the number of previously uncovered attributes.

The proposition follows straightforwardly from the fact that, if Xi covers
all the previously uncovered attributes without overlapping Y , the likelihood
of the resulting covering will be exactly the right hand side of inequality 7.3.
Otherwise, we’ll have to include some other set, which by the ordering on w will
provide an equal or smaller addition in likelihood per attribute. Hence, this
will result in a smaller overall likelihood for the transaction. Thus, Proposition
10 defines an upper bound that we can compare to the best found solution so
far; and thus to decide whether it makes sense to continue building the current
cover or to start backtracking already.

Written in pseudo code, this optimal covering approach is depicted in Algo-
rithm 12. However, as the optimal covering method considers a prohibitively

137

7. Low-Entropy Set Selection

Algorithm 12 The OptimalCover Algorithm
OptimalCover(I, CT, t) :

1: OrderOnLikelihoodPerAttribute(CT, t)
2: return Optimal(I, CT, ∅, ∅)

Optimal(I, CT,C,BestC) :
4: if |C| ← |I| then
5: return C
6: end if
7: ∆← ∅
8: m← |I| − |C|
9: for e ∈ CT do
10: ∆← e ∪∆
11: if e ∩ C ← ∅ then
12: if m · w(e) + llh(C) > llh(BestC) then
13: CandC ← Optimal(CT \∆, C ∪ e,BestC)
14: BestC ← arg min

C
(llh(BestC), llh(CandC))

15: end if
16: end if
17: end for
18: return BestC

large search space, it only makes sense to apply it to moderately sized databases
of up to about 25 attributes. To allow for more practical application, we present
a fast, heuristic alternative that follows very naturally from the minimum apri-
ori encoding length/maximum likelihood principle.

Approximating the Best Cover

Recall that our goal is to cover using elements that provide as high a gain
as possible in the overall likelihood. The initial order used by the optimal
algorithm provides us a good approximation, as it orders the elements on the
gain in likelihood per attribute. If we use this order in a greedy fashion (without
overlap), the resulting cover is the same as the first full cover the optimal cover
strategy considers.

We present, as Algorithm 13, the translation of this simple scheme into
pseudo code. Note that for an actual implementation a lot of speed can be
gained as one can easily cache the per-transaction orders. As code tables remain
very small this is fully feasible.

138

7.3. Algorithms

Algorithm 13 The GreedyCover Algorithm
GreedyCover(I, CT, t) :

1: Cover ← ∅
2: for X ∈ CT , in order of gain in likelihood per attribute for t, do
3: if X ∩ Cover = ∅ then
4: Cover ← X ∪ Cover
5: if |Cover| = |I| then
6: return Cover
7: end if
8: end if
9: end for

Search strategy
To cut down a large part of the search space, we use the following simple greedy
search strategy:

• Start with the code table consisting only of the singleton attribute sets

• Add the low-entropy sets one by one. If the resulting codes lead to a
better compression, keep it. Otherwise, discard the set.

By its iterative nature, the success of this strategy largely depends on the
order in which the patterns are considered.

Ordering the Candidate Sets

Using the strategy above, the optimal compression can be approximated best
by trying all possible orders. However, as the number of possible orders of a set
of size n equals n! this clearly is infeasible for but the smallest of pattern collec-
tions. So, our last step to reduce the search space of our problem heuristically
is to introduce an order on the candidate set F . We order the candidates such
that sets that have a good chance of being used – those with high likelihood
addition over size – are at the top of the list. On the candidate set level, this
translates into preferring sets that have a low entropy over size, or H (X)/|X|.

The Low-Entropy Set Selection algorithm
Now the main ingredients for our low-entropy set based compression algo-

rithm are in place, we can assemble these into the Low-Entropy Set Selection
(LESS for short) algorithm. We present it in pseudo–code as Algorithm 14.

As input, it requires the attribute set I, the candidate set of low-entropy
sets F , and a database D. Also, one of the above discussed cover strategies for

139

7. Low-Entropy Set Selection

Algorithm 14 The LESS Algorithm
LESS(I,F ,D) :

1: CT ← Standard Code Table(I,max |F ∈ F|)
2: for F ∈ Fo \ I in Candidate Order do
3: CTc ← (CT ∪ {F})
4: if L(CTc,D) < L(CT,D) then
5: CT ← CTc
6: end if
7: end for
8: return CT

transaction encoding has to be chosen. Our naive compression process starts
with the simplest description of the data, using only singletons to encode the
data, together with the fully initialized indicator code table. Then, iteratively
(in Candidate Order) low-entropy sets are added to the code table one by
one. Each time, using this new code table the new total compressed size of the
database is calculated. If this addition improves the attained compression, the
set is kept, otherwise it is permanently discarded.

In the course of this iterative process it is very well possible that by adding
a new element, the usage of other patterns in the code table suddenly strongly
decreases; thereby increasing their code lengths and possibly hindering overall
compression. We therefore introduce a pruning variant of our method. Once
an element F ∈ F is accepted into the code table, we reconsider all other
elements X ∈ CTLE iteratively by temporarily removing them and calculating
the compressed size. By MDL-principle, we then go for the best compression,
permanently removing those elements that no longer help the compression.

7.4 Experiments

In this section we experimentally evaluate our methods. We first investigate the
differences between OptimalCover and GreedyCover. Next, we evaluate
whether our method models relevant structure of the data. Thirdly, we look at
the size of the resulting pattern sets and compare these to two other existing
methods. Last, we examine these pattern sets in detail.

Datasets
For the experimental validation of our methods we use a wide range of datasets.
From the widely used UCI repository [33] we take some of the largest and most
dense databases. Further, we use two databases for which we know low-entropy
analysis is well suited: the Mammals and Courses databases. The former con-

140

7.4. Experiments

Table 7.2: Statistics of the datasets used in the experiments.

Dataset |I| |D| density L(D | ST)
Adult 97 48842 15.3 34229566
Course 83 2405 20.5 1422594
Heart 50 303 28.0 134588
Letter recognition 102 20000 16.7 14954124
Mammals 40 2183 47.0 552457
Mammals20 20 2183 53.1 248665
Mushroom 119 8124 19.3 7898102
Pen digits 86 10992 19.8 6757243

Per dataset the number of attributes, the number of transactions, the
density (percentage of 1’s) and the number of bits required by LESS to
compress the data using the singleton-only standard code table ST .

sists of presence/absence records of European mammals3 within geographical
areas of 50x50 kilometers [96]. The Courses data describes courses taken by
students at the Department of Computer Science of the University of Helsinki.
As we want to focus on interesting variable interactions, we disregard attributes
with extremely high (about 1.0) or very low (about 0.0) support.

The details for these datasets are depicted in Table 7.2. For each database
we show the number of attributes, the number of rows and the density: the per-
centage of ‘present’ attributes. The next column indicates the total compressed
size in bits by using the singletons – only standard code table ST .

Due to the high density most of these datasets, they are not well suited
for analysis by frequent itemset mining: far too many co-occurences exist.
For example, at 10% support already over 11 million frequent itemsets are
discovered in the Mammals dataset and up to 5.5 billion can be extracted from
the Mushroom data.

When mining for low-entropy sets, those itemsets of which the attributes
are too weakly correlated (i.e. their entropy is above the threshold) are ignored.
In order to compress the data optimally, we have to allow LESS to consider as
many low-entropy sets as possible. We therefore set the entropy threshold ε as
low as feasible with our current low-entropy set mining implementation.

3The full version of the Mammals dataset is available for research purposes upon request
from the Societas Europaea Mammalogica.
http://www.european-mammals.org

141

7. Low-Entropy Set Selection

Optimal and greedy covering

To compare the performance between the optimal and the greedy covering
strategies (Algorithms 12 and 13), we use Mammals20, which constains the 20
most varying attributes of the full Mammals dataset. On this data we mine
low-entropy sets using a maximum entropy threshold of 3 1

3 bits, resulting in
2321 low-entropy sets.

For each transaction we compute a cover using both GreedyCover and
OptimalCover on all of the 2321 sets as the code table, as well as a baseline
cover of only singleton sets. The results for each single transaction are presented
in Figure 7.2. First of all, we see that using sets pays off both for the optimal
and the greedy methods with an increase in log–likelihood for each transaction.
Moreover, we see that the optimal transaction cover does indeed result in the
highest log–likelihood scores. However, the much faster greedy approach finds
covers that approximate the optimal score closely.

Next, we test these strategies with LESS using the LE-sets as candidates,
but without pruning. In two hours, the optimal variant selected 25 sets to
compress the data into 184572 bits. In one minute, the greedy approach finds a
description of only 163908 bits, using 148 sets. By using a larger number of sets,
it attains a higher likelihood over the data (-22091 and -19767, respectively).
Analyzing the resulting code tables, it is evident that the optimal method is
more picky and less promiscuous: if a set is allowed into the code table, it
will stay in use and will not be fully traded in, opposed to what the greedy
method does. However, the resulting code tables are very similar to those of
the greedy algorithm when pruning is enabled. The greedy approach seems
to concatenate the ‘optimal’ sets together into 12 sets to achieve a likelihood
of -22330, while using only 145940 bits. Overall, the greedy cover algorithm
allows MDL to condense the data better. When considered together, this tells
us that GreedyCover can be used as a fast and high quality alternative
for OptimalCover. For the remainder of this section, we’ll therefore use
GreedyCover.

Modeling relevant structure

To evaluate whether LESS models the relevant structure in the data, we com-
pare the compression scores of the actual data to those obtained from 1000
swap randomized [49] versions of that data. This process preserves the row
and column margins of the given data set, but obscures the internal dependen-
cies of the data. The idea is that if the true structure in the data is captured,
there should be significant differences between the models found on the original
and randomized datasets.

For this large number of experiments we used the Mammals20 dataset. We
applied as many swaps as there are 1’s in the data. Figure 7.3 shows the

142

7.4. Experiments

0 200 400 600 800 1000 1200 1400 1600 1800 2000

−15

−10

−5

row (transaction)

lik
el

ih
oo

d

optimal

greedy

singleton

Figure 7.2: The likelihood scores for each transaction in theMammals20 dataset
using the OptimalCover Algorithm, the GreedyCover Algorithm and
singleton (all attributes independent) covering. The transactions have been
sorted according to the likelihood score of GreedyCover.

1. 6 1. 7 1. 8 1. 9 2
x 105

0

50

100

150

total compressed size in bits

Original
data

Figure 7.3: Distribution of the compressed sizes of the swap randomized
Mammals20 datasets. The compressed size of the original dataset as indicated
by the arrow, and is 1.64× 105 bits.

histogram of the compressed sizes of these 1000 databases.
The picture shows that the original data can be compressed significantly

better than that of the randomized datasets (p-value of 0). Also, we noted
that the log–likelihood score was much higher for the real data, even though
we directly optimize the compression and not this score. Further, analyzing
the contents of the code tables, we also note a significant difference in set
cardinality. For the real data, the average set was 2.35 attributes long, while
for the randomized data we see elements with an average length of 1.89.

143

7. Low-Entropy Set Selection

Table 7.3: Results of LESS, using the GreedyCover algorithm.

Candidates LESS Krimp
Dataset ε |F| prune |CT | L(CT,D) L% ms |CT |

Adult 2.9 143766 no 153 27149706 79.3 1 1941
yes 10 26678350 77.9 1303

Courses 2.8 455709 no 918 1003730 70.6 100 551
yes 28 877284 61.7 285

Heart 3.3 414589 no 115 117343 87.2 1 108
yes 49 115539 85.8 79

Letter 3.3 368889 no 838 11375860 76.1 50 3395
yes 21 10547561 70.5 1259

Mammals 3.8 250628 no 488 359116 65.0 200 536
yes 30 314932 57.0 254

Mushroom 2.8 437239 no 241 5802484 73.5 1 689
yes 10 5474484 69.3 424

Pen digits 2.5 71994 no 160 4088429 60.5 50 2667
yes 28 3778077 55.9 1091

Results of LESS using the GreedyCover algorithm for a variety
of datasets, with comparison to the frequent itemset based method
Krimp. Shown are the threshold ε (in bits) for mining low-entropy
sets and the number of sets discovered. For LESS, for both pruning
disabled and enabled, the number of LE-sets selected into the code ta-
ble, the total compressed size of the data and the achieved compression
ratio. For Krimp the minimal support threshold ms for mining fre-
quent itemsets and the number of selected itemsets without and with
pruning, resp.

Reduction and improvement

In Table 7.3 we present the quantified results of running LESS using the
GreedyCover algorithm. The main outcome this table shows is the large
reduction in number of low-entropy sets that the algorithm attains. Even for
relatively low entropy thresholds, up to 5 orders of magnitude fewer sets are
selected. At the same time, the small compressed sizes of the databases show
the quality of these descriptions.

We also see that enabling pruning has a strong effect on the number of se-
lected sets: roughly an order of magnitude. Inspection of the code tables shows
that the two strategies provide slightly different views on the data. Without

144

7.4. Experiments

pruning, the likelihood maximization process selects more specific sets. Conse-
quently, we see that of the selected sets typically only a few (one or two) very
characteristic instantiations find major use. With pruning enabled the process
is forced to select more general patterns. This effect is clearly illustrated by
the much smaller number of returned sets, of which now multiple instantiations
are used often. The much better compression scores show that pruning results
in better data descriptions.

Next, we compare the number of patterns our method returns to two other
data description methods. First, we compare to Krimp, which uses frequent
itemsets for a lossless compression. Table 7.3 shows that our method requires
far fewer patterns, even although these do describe all interactions in the data,
instead of just the 1’s. It also illustrates that our method is well suited to deal
with dense databases, for which the differences grow even larger. For example,
at a minsup of 10% already over 11 million frequent itemsets are mined on
Mammals. Entropy recognises the structure in the data and returns a fraction
of this amount in low-entropy sets.

Second, we compare our scores to those of the lossy method proposed
by Bringmann and Zimmermann [20] on the largest dataset they considered:
Mushroom. Depending on the selection criterium, their approach returns 21
to 71 itemsets to describe only part of the dataset. Our method, on the other
hand, requires only 10 LE-sets to provide a detailed lossless description of the
data.

The runtimes of the experiments ranged from one minute up to ten hours.
Analysis shows that the runtime is mainly dependent on the number of trans-
actions and particularly the size of the code tables. Hence, the time required
for the experiments where pruning keeps the code tables small are in the order
of few minutes up to one hour – typically 45 minutes. The experiments with
pruning disabled (where the code tables are allowed to grow to hundreds of
elements) typically took up to three hours, with an exception for Mushroom of
ten hours.

Examining the code tables
The code tables produced by LESS are small enough for human analysis, for
instance through visualization. Figure 7.1 in Section 7.1 provides a good ex-
ample of such a visualization. Each column in the table presents a LE-set with
bullets marking the species (rows) that are included in the set. Moreover, as
Table 7.1 shows, one can also zoom in further and investigate the interaction
combinations between the variables in full detail.

We observe in Figure 7.1 that some attributes are included in more than
just one set in the code table. At first this looks like redundancy in the descrip-
tion. However, computing a centroid vector for each LE-set in the code table
according to the rows it covers and comparing these to the centroids found

145

7. Low-Entropy Set Selection

from the data by the k-means algorithm [88] we notice that the overlapping
sets are mostly used in different clusters in the data. For instance the LE-sets
{F. Sylvestris, M. Arvalis, G. Glis, M. Foina} and {F. Sylvestris, M. Subter.,
G. Glis, M. Foina} are associated to different clusters. Thus, these mappings
show that the overlapping sets are not redundant but tuned to describe specific
parts of the data.

7.5 Related Work

Lately, the pattern explosion problem has attracted a lot of research. For fre-
quent pattern mining, lossless methods such as closed [103] and non-derivable [25]
itemsets were proposed to remove the redundancy within the pattern set. How-
ever, the attained reduction deteriorates heavily under noise. Methods that
provide a lossy representation of the complete pattern set include maximal
itemsets [12]. Yan et al. [135] proposed a method that selects k representative
patterns that together summarize the pattern set well.

Low-entropy sets [59] are a more expressive, entropy-based, generalization
of frequent patterns. These allow for more thorough data analysis and reduce
the pattern explosion at the same time. However, at high entropy levels the pat-
tern set may still grow prohibitively large. Other related information-theoretic
pattern definitions include [70, 98] as well as work on correlated pattern min-
ing [66].

Recently, the approach of finding small subsets of informative patterns has
attracted a significant amount of research [20, 69, 95, 113]. Pattern Teams [69]
are groups of k non-redundant patterns that have been exhaustively (k<10)
optimized according to criterions such as joint entropy. Bringmann et al. [20]
proposed a greedy variant that can consider larger (100’s) pattern sets. Either
method is lossy, in the sense that it finds pattern sets that cover only part of
the data.

Alternatively, pattern sets can be selected to describe the data best, which
falls naturally in the compression approach to data mining [42]. Recently,
we introduced [113] the MDL based itemset selection algorithm Krimp (see
Chapter 2). Although we follow a similar selection approach, the generality
and applicability of the methods is rather different. By considering data 0/1–
symmetric we can capture all major interactions between attributes, not just
co-occurences. Partly thanks to this generalization, LESS yields in the order
of tens of patterns, opposed to hundreds to thousands for Krimp. Through
these much smaller numbers inspection by hand is now possible. Also, these
pattern sets have a different meaning, as they view the data in terms of strongly
interacting variables; not just present items.

Further, the technical solutions we propose are more general. Instead of
using ad-hoc order heuristics to determine which patterns describe what part

146

7.6. Discussion

of the data, we introduce a principled way of finding locally optimal covers of
the data through the maximum likelihood principle. By using two separate
encodings, one identifying the pattern and the other its value instantiation,
our framework is more generally applicable. For instance, a promising future
research direction would be to expand it to other pattern selection settings
where the patterns lack a one-to-one mapping to a specific value, like selecting
the most interesting subgroups identified by SQL queries.

7.6 Discussion

Our novel combination of compression and entropy finds very short, high-
quality descriptions of the data. As these descriptions are easily visualized,
they can easily be interpreted by humans. They show what goes on in the
data, on two levels of detail: an overview of the strongly interacting variables
in general, and specifying in detail what are the most prominent interactions.

By basing our cover strategies on the maximum likelihood principle, we have
a very natural approach to only use instantiations to describe data where this
makes sense. Consequently, the code tables capture the significant structure in
the data, as the swap-randomization experiments show.

Reconsidering older code table elements once a new LE-set has been admit-
ted increases the quality of the data description even further. Although our
method needs to compress the data for each candidate, the measured running
times show this approach to be realistic for analysis of large and dense datasets
in particular. The candidate set is determined by the max entropy parameter,
which may be set as high as is feasible for mining, or makes sense from an anal-
ysis point of view. Further, besides the decision of whether or not to prune,
there are no parameters: MDL selects the best code table.

LESS combines the best of the lossless and lossy approaches to data de-
scription; the number of returned patterns is comparable to the latter, while
at the same time our pattern sets do provide a lossless description of the data.
Further, these patterns consider both 0’s and 1’s.

Even though our current implementation is unpolished, the recorded run-
ning times show the method can already realistically be applied for data anal-
ysis. However, many possible optimizations are available. One of the most
promising would be to just calculate the change the current candidate implies
to the previously found best optimum; opposed to calculating a full database
cover every time. Speedup on the subset matching could be gained by using
a true bitmap representation of the database and the instantiations. Thirdly,
paralellization can easily be applied to LESS, both in respect to distributing
parts of the database, as well as considering of the candidates distributedly. Us-
ing either, or all, these optimizations LESS would become even more applicable
for analysis of very large dense databases.

147

7. Low-Entropy Set Selection

7.7 Conclusions

We presented LESS, a method for selecting very small collections of highly
descriptive low-entropy sets through compression. The small size of these
collections facilitates thorough analysis by experts. The interpretability of
low-entropy sets makes this analysis even easier. By using entropy instead of
frequency, it is particularly suited for mining dense datasets. Further, by re-
garding data 0/1 symmetric, LESS captures all major interactions in the data,
not just co-occurences.

Clearly, entropy is not just defined for binary data, but also for other types,
such as real-valued data. Hence, the generalization of this work to such other
types of data would make for a both useful and challenging future research
direction. Another promising direction would be to apply our framework to
other pattern types that lack one-to-one value associations, such as for instance
the queries used in subgroup discovery.

148

CHAPTER 8

Finding Good Itemsets by
Packing Data

The problem of selecting small groups of itemsets that represent the data
well has recently gained a lot of attention. We approach the problem by search-
ing for the itemsets that compress the data efficiently. As a compression tech-
nique we use decision trees combined with a refined version of MDL. More
formally, assuming that the items are ordered, we create a decision tree for
each item that may only depend on the previous items. Our approach allows
us to find complex interactions between the attributes, not just co-occurrences
of 1s. Further, we present a link between the itemsets and the decision trees and
use this link to export the itemsets from the decision trees. In this chapter we
present two algorithms. The first one is a simple greedy approach that builds
a family of itemsets directly from data. The second one, given a collection of
candidate itemsets, selects a small subset of these itemsets. Our experiments
show that these approaches result in compact and high quality descriptions of
the data.1

1 This work was originally published as [118]:
Tatti, N., Vreeken, J. (2008) Finding Good Itemsets by Packing Data. In Proceedings of the
ICDM’08, pages 588-597.

149

8. Finding Good Itemsets by Packing Data

8.1 Introduction

One of the major topics in data mining research is the discovery of interesting
patterns in data. From the introduction of frequent itemset mining and asso-
ciation rules [5], the pattern explosion was acknowledged: at high frequency
thresholds only common knowledge is revealed, while at low thresholds pro-
hibitively many patterns are returned.

Part of this problem can be solved by reducing these collections either loss-
less or lossy, however even then the resulting collections are often so large that
they cannot be analyzed by hand or even machine. Recently, it was therefore
argued [54] that while the efficiency of the search process has received ample
attention, there still exists a strong need for pattern mining approaches that
deliver compact, yet high quality, collections of patterns (see Section 8.6 for a
more detailed discussion). Our goal is to identify the family of itemsets that
form the best description of the data. Recent proposals to this end all consider
just part of the data, by either only considering co-occurrences (i.e. Krimp,
see Chapter 2) or being lossy in nature [20,69,127]. In this chapter, we present
two methods that do describe all interactions in the data. Although different in
approach, both methods return small families of itemsets, which are selected to
provide high-quality lossless descriptions of the data in terms of local patterns.
Importantly, our parameterless methods regard the data symmetrically. That
is, we consider not just the 1s in the data, but also the 0s. Therefore, we are
able to find patterns that describe all interactions between items in the data,
not just co-occurrences.

As a measure of quality for the collection of itemsets we employ the practi-
cal variant of Kolmogorov Complexity [81], the Minimum Description Length
(MDL) principle [53]. This principle implies that we should do induction
through compression. It states that the best model is the model that pro-
vides the best compression of the data: it is the model that captures best the
regularities of the data, with as little redundancy as possible.

The main idea of our approach is to use decision trees to determine the
shortest possible encoding of an attribute, by using the values of already trans-
mitted attributes. For example, let us assume two binary attributes A and B.
Now say that for 90% of the time when the attribute A has a value of 1, the
attribute B has a value of 0. If this situation occurs frequently, we recognize
this dependency, and include the item A in the tree deciding how to encode B.

Using such trees allows us to find complex interactions between the items
while at the same time MDL provides us with a parameter-free framework for
removing fake interactions that are due to the noise in the data. The main
outcome of our methods is not the decision trees, but the group of itemsets
that form their paths: these are the important patterns in the data since they
capture the dependencies between the attributes implied by the decision trees.

The two algorithms we introduce to this end are orthogonal in approach.

150

8.2. Preliminaries

Our first method builds the encoding decision trees directly from the data; it
greedily introduces splits until no split can help to compress the data further.
Just as naturally as we can extract itemsets from these trees, we can consider
the trees that can be built from a collection of itemsets. That link is exploited
by our second method, which tries to select the best itemsets from a larger
collection.

Experimental evaluation shows that both methods return small collections
of itemsets that provide high quality data descriptions. These sets allow for very
short encoding of the data, which inherently shows that the most important
patterns in the data are captured. As the number of itemsets are small, we
can easily expose the resulting itemsets to further analysis, either by hand or
by machine.

The rest of this chapter is as follows. After the covering preliminaries in
Section 8.2, we discuss how to use decision trees to optimally encode the data
succinct in Section 8.3. Next, in Section 8.4, we explain the connection between
decision trees and itemsets. Section 8.5 introduces our method with which good
itemsets can be selected by weighing these through our decision tree encoding.
Related work is discussed in Section 8.6, after which we present the experiments
on our methods in Section 8.7. We round up with discussion and conclusions
in Sections 8.8 and 8.9.

8.2 Preliminaries

In this chapter we introduce a starkly different way of encoding data and se-
lecting itemsets, for which we here introduce preliminaries and notations used
in subsequent sections.

A binary dataset D is a collection of |D| transactions, binary vectors of
length K. The ith element of a random transaction is represented by an at-
tribute ai, a Bernoulli random variable. We denote the collection of all the
attributes by A = {a1, . . . , aK}. An itemset X = {x1, . . . , xL} ⊆ A is a subset
of attributes. We will often use the dense notation X = x1 · · ·xL.

Given an itemset X and a binary vector v of length L, we use the notation
p(X = v) to express the probability of p(x1 = v1, . . . , xL = vL). If v contains
only 1s, then we will use the notation p(X = 1), if v contains only 0s, then we
will use the notation p(X = 0).

Given a binary dataset D we define qD to be an empirical distribution,

qD(A = v) = |{t ∈ D | t = v}|/|D|.

We define the frequency of an itemset X to be fr(X) = qD(X = 1).
In this chapter we use the common convention 0 log 0 = 0 and all logarithms

are of base 2.

151

8. Finding Good Itemsets by Packing Data

In the subsequent sections we will need some knowledge of graphs. All the
graphs in this chapter are directed. Given a graph G we denote by V (G) the
set of vertices and by E(G) the edges of G. A directed graph is said to be
acyclic (DAG) if there is no cycle in the graph. A directed graph is said to be
directed spanning tree if each node (except one special node) has exactly one
outgoing edge. The special node has no outgoing edge and is called sink.

8.3 Packing Binary Data with Decision Trees

In this section we present our model for packing the data and a greedy algorithm
for searching good models.

The model
Our goal in this section is to define a model that is used to transmit a binary
dataset D from a transmitter to a receiver. We do this by transmitting one
transaction at the time, the order of which does not matter. Within a single
transaction we transmit the items one at the time.

Assume that we are transmitting an attribute at. As the attribute may
have two values, we need to have two codes to indicate its value. We define
the table in which these two codes are stored to be a coding table. Obviously,
the codes need to be optimal, that is, as short as possible. From information
theory [35], we have the optimal Shannon codes of length − log(p(x)). Here,
the optimal code lengths are thus − log qD(at = 1) and − log qD(at = 0). We
need to transmit the attribute |D| times. The cost of these transmissions is

−|D|
∑
v={0,1}

qD(at = v) log qD(at = v) .

This is the simplest case of encoding at. Note that we are not interested in
the actual codes, but only in their lengths: they allow us to determine the
complexity of a model.

A more complex and more interesting approach to encode at succinct is to
have several coding tables from which the transmitter chooses one for trans-
mission. Choosing the coding table is done via a decision tree that branches
on the values of other attributes in the same transaction. That is, we have a
decision tree used for encoding at in which each leaf node is associated with a
different coding table of at. The leaf is selected by testing the values of other
attributes within the same transaction.

Example 11. Assume that we have three attributes, a, b, and c and consider
the trees given in Figure 8.1. In Figure 8.1(a) we have the simplest tree, a
simple coding table with no dependencies at all. A more complex tree is given

152

8.3. Packing Binary Data with Decision Trees

in Figure 8.1(b) where the transmitter chooses from two coding table for a
based on the value of c. Similarly in, Figure 8.1(d) we have three different
coding tables for c. The choice of the coding table in this case is based on the
values of a and b.

p(a = 1) = 0.5
p(a = 0) = 0.5

(a) T1, Trivial tree encoding a

p(a = 1) = 0.6
p(a = 0) = 0.4

p(a = 1) = 0.8
p(a = 0) = 0.2

c

1 0

(b) T2, Alternative tree for a

p(b = 1) = 0.3
p(b = 0) = 0.7

p(b = 1) = 0.1
p(b = 0) = 0.9

a

1 0

(c) T3, Tree for b

p(c = 1) = 0.6
p(c = 0) = 0.4

p(c = 1) = 0.8
p(c = 0) = 0.2

p(c = 1) = 0.3
p(c = 0) = 0.7

a

1

b

0

1 0

(d) T4, Tree for c

Figure 8.1: Toy decision trees.

Let us introduce some notation. Let T be a tree encoding at. We use the
notation t(T) = at. We set src(T) to be the set of all items used in T for
choosing the coding table.

Example 12. For the tree T3 in Figure 8.1(c) we have t(T3) = b and src(T3) =
{a} and for T4 in Figure 8.1(d) we have t(T4) and src(T4) = {a, b}.

To define the cost of transmitting at we first define lvs(T) to be the set of
all leaves in T . Let L ∈ lvs(T) be a leaf and qD(L) be the probability of L
being chosen. Further, qD(at = v | L) is the probability of at = v given that L

153

8. Finding Good Itemsets by Packing Data

is chosen. We now know that the optimal cost, denoted by cD(T), is

−|D|
∑

L∈lvs(T)

∑
v={0,1}

qD(at = v, L) log qD(at = v | L) .

Example 13. The number of bits needed by T1 in Figure 8.1(a) to transmit a
in a random transaction is

−0.5 log 0.5− 0.5 log 0.5 = 1.

Similarly, if we assume that qD(a = 1) = qD(a = 0) = 0.5, the number of bits
needed by T3 to transmit c in a random transaction is

0.5 (−0.3 log 0.3− 0.7 log 0.7) +
0.5 (−0.1 log 0.1− 0.9 log 0.9) = 0.62.

In order for the receiver to decode the attribute at he must know what
coding table was used. Thus, he must be able to use the same decision tree
that the transmitter used for encoding at. To ensure this, the transmitter must
know src(T) when decoding at. So, the attributes must have an order in which
they are sent and the decision trees may only use the attributes that have
already been transmitted.

The aforementioned requirement is easily characterized by the following
construction. LetG be a directed graph withK nodes, each node corresponding
to an attribute. The graph G contains all the edges of form (at, as) where
as ∈ src(T), where T is the tree encoding at. We call G the dependency graph.
It is easy to see that there exists an order of the attributes if and only if G is
an acyclic graph (DAG). If G constructed from a set of trees T = {T1, . . . , TK}
is indeed DAG we call the set T a decision tree model.

Example 14. Consider a graph given in Figure 8.2(a) constructed from the
trees T2, T3, and T4 (Figure 8.1). We cannot use this combination of trees for
encoding since there is a cycle in the graph. On the other hand if we use trees
T1, T3, and T4, then the resulting graph (given in Figure 8.2(b)) is acyclic and
thus these trees can be used for the transmission.

Encoding data
In order for the receiver to be able to decode the attributes, he must know
both the coding tables and the trees. Hence, we need to transmit both of
these. First, we cover how the coding tables, the leafs of the decision trees, are
transmitted.

To transmit the coding tables we use the concept of Refined MDL [53].
Refined MDL is an improved version of the more traditional two-part MDL

154

8.3. Packing Binary Data with Decision Trees

c

a

b

(a) Dependency graph with cycles

c

a

b

(b) Dependency acyclic graph

Figure 8.2: Dependency graphs constructed from the trees given in Figure 8.1.

(sometimes referred to as crude MDL). The basic idea of the refined variant
is that instead of transmitting the coding tables, the transmitter and the re-
ceiver use so called universal codes. Universal codes are the cornerstone of
Refined MDL. As these are codes can be derived without any further shared
information, this allows for a good weighing of the actual complexity of the
data and model, with virtually no overhead. While the practicality of applying
such codes depends on the type of the model, our decision trees are particularly
well-suited.

These universal codes provide a cost called the complexity of the model.
This cost can be calculated as follows: let L be a leaf in the decision tree (i.e.
coding table), and M be the number of transactions for which L is used. Then
the complexity of this leaf, denoted by cMDL(L), is

cMDL(L) = log
M∑
k=0

(
M

k

)(
k

M

)k (
M − k
M

)M−k
.

In general, there is no known closed formula for the complexity of the model.
Hence estimates are usually employed [109]. However, for our tree models
we can apply an existing linear-time algorithm that solves the complexity for
multinomial models [72]. We should also point out that the Refined MDL
is asymptotically equivalent to Bayes Information Criteria (BIC) if the num-
ber of transactions goes to infinity and the number of free parameters stays
fixed. However, for moderate numbers of transactions there may be significant
differences [53].

Now that the coding tables can be transmitted, we need to know how to
transmit the actual tree T . To encode the tree we simply transmit the nodes of
the tree in a sequence. We use one bit to indicate whether the node is a leaf, or
an intermediate node N ∈ intr(T). For an intermediate node we additionally
use logK bits, where K is the number of attributes in D, to indicate the item
that is used for the split.

155

8. Finding Good Itemsets by Packing Data

The combined cost of a tree T , denoted by c(T), is

c(T) =
∑

N∈intr(T)

(
1 + logK

)
+ cD(T) +

∑
L∈lvs(T)

(
1 + cMDL(L)

)
,

that is, the cost c(T) is the number of bits needed to transmit the tree and the
attribute at in each transaction of D.

Example 15. Assume that we have a dataset with 100 transactions and 3
items. Assume also that qD(a = 0) = qD(a = 1) = 0.5. We know that the
complexity of the leaves in this case is cMDL(L) = 3.25. The cost of the tree T3
(Figure 8.1(c) is

c(T3) =1 + log 3
+ 1 + 3.25 + 50 (−0.3 log 0.3− 0.7 log 0.7)
+ 1 + 3.25 + 50 (−0.1 log 0.1− 0.9 log 0.9)

=69.8.

Given a decision tree model T = {T1, . . . , TK} we define the cost c(T) =∑
i c(Ti). The cost c(T) is the number of bits needed to transmit the trees,

one for each attribute, and the complete dataset D.
We should point out that for data with many items, the term logK grows

and hence the threshold increases for selecting an attribute into any decision
tree. This is an interesting behavior, as due to the finite number of transactions,
for datasets with many items there is an increased probability that two items
will correlate, even though they are independent according to the generative
distribution.

Greedy algorithm
Our goal is to find the decision tree model with the lowest complexity cost.
However, since many problems related to the decision trees are NP-complete
[100] we will resort to a greedy heuristic to approximate the decision tree model
T with the lowest c(T). It is based on the ID3 algorithm.

To fully introduce the algorithm we need some notation: By Trivial-
Tree(at) we mean the simplest tree packing at without any other attributes
(see Figure 8.1(a)). Given a tree T , a leaf L ∈ lvs(T), and an item c not
occurring in the path from L to the root of T , we define SplitTree(T, L, c)
to be a new tree where L is replaced by a non-leaf node testing the value of c
and having two leaves as the branches.

156

8.4. Itemsets and Decision Trees

The algorithm GreedyPack starts with a tree model consisting only of
trivial trees. The algorithm finds the tree which saves the most bits by split-
ting. To ensure that the decision tree model is valid, GreedyPack builds a
dependency graph G describing the dependencies of the trees and makes sure
that G is acyclic. The algorithm terminates when no further split can be made
that saves any bits.

Algorithm 15 GreedyPack algorithm constructs a decision tree model T =
{T1, . . . , TK} from a binary dataset D.

GreedyPack (D) :
1: V ← {v1, . . . , vK}, E ← ∅
2: G← (V,E)
3: Ti ← TrivialTree(ai) , for i = 1, . . . ,K
4: while there are changes do
5: for i = 1, . . . ,K do
6: Oi ← Ti
7: for L ∈ lvs(Ti), j = 1, . . . ,K do
8: if E ∪ (vi, vj) is acyclic and aj /∈ path(L) then
9: U ← SplitTree(Ti, L, aj)
10: if c(U) < c(Oi) then
11: Oi ← U , si ← j
12: end if
13: end if
14: end for
15: end for
16: k ← arg min

i
{c(Oi)− c(Ti)}

17: if c(Ok) < c(Tk) then
18: Tk ← Ok
19: E ← E ∪ (vk, vsk)
20: end if
21: end while
22: return {T1, . . . , TK}

8.4 Itemsets and Decision Trees

So far we have discussed how to transmit binary data by using decision trees. In
this section we present how to select the itemsets representing the dependencies
implied by the decision trees. We will use this link in Section 8.5. A similar
link between itemsets and decision trees is explored in [102] although our setup
and goals are different.

157

8. Finding Good Itemsets by Packing Data

Given a leaf L, the dependency of the item at is captured in the coding
table of L. Hence we are interested in finding itemsets that carry the same
information. That is, itemsets from which we can compute the coding table.
To derive the codes for the leaf L it is sufficient to compute the probability

qD(at = 1 | L) = qD(at = 1, L) /qD(L) . (8.1)

Our goal is to express the probabilities on the right side of the equation
using itemsets. In order to do that let P be the path from L to its root. Let
pos(L) be the items along the path P which are tested positive. Similarly,
let neg(L) be the attributes which are tested negative. Using the inclusion-
exclusion principle we see that

qD(L) = qD(pos(L) = 1, neg(L) = 0)

=
∑

V⊆neg(L)

(−1)|V |fr(pos(L) ∪ V) . (8.2)

We compute qD(at = 1, L) in a similar fashion. Let us define sets(L) for a
given leaf L to be

sets(L) = {V ∪ pos(L) | V ⊆ neg(L)}
∪ {V ∪ pos(L) ∪ {at} | V ⊆ neg(L)} .

Combining Eqs. 8.1–8.2 we see that the collection sets(L) satisfies our goal.

Proposition 16. The coding table associated with the leaf L can be computed
from the frequencies of sets(L).

Example 17. Let L1, L2, and L3 be the leaves (from left to right) of T4 in
Figure 8.1(d). Then the corresponding families of itemsets are sets(L1) =
{a, ac}, sets(L2) = {b, ab, bc, abc}, and sets(L3) = {∅, a, b, ab, c, ac, bc, abc}.

We can easily see that the family sets(L) is essentially the smallest family
of itemsets from which the coding table can be derived uniquely.

Proposition 18. Let G 6= sets(L) be a family of itemsets. Then there are
two data sets, say D1 and D2, for which qD1(at = 1 | L) 6= qD2(at = 1 | L) but
fr(G;D1) = fr(G;D2).

Given a tree T we define sets(T) to be sets(T) =
⋃
L∈lvs(T) sets(L). We

also define sets(T) =
⋃
i sets(Ti) where T = {T1, . . . , TK} is a decision tree

model.

158

8.5. Choosing Good Itemsets

8.5 Choosing Good Itemsets

The connection between itemsets and decision trees made in the previous sec-
tion allows us to consider an orthogonal approach to identify good itemsets.
Informally, our goal is to construct decision trees from a family of itemsets F ,
selecting the subset from F that provides the best compression of the data.
More formally, our new approach is as follows: given a downward closed family
of itemsets F , we build a decision tree model T = {T1, . . . , TK} providing a
good compression of the data, with sets(T) ⊆ F .

Before we can describe our main algorithm, we need to introduce some
further notation. Firstly, given two trees Tp and Tn not using attribute c, we
define JoinTree(c, Tp, Tn) to be the join tree with c as the root node, Tp as
the positive branch of c, and Tn as the negative branch of c. Secondly, to define
our search algorithm we need to find the best tree

bt(at;S,F) = arg min
T
{c(T) | t(T) = at,

src(T) ⊆ S, sets(T) ⊆ F} ,

that is, bt(at;S,F), returns the best tree for at for which the related sets are
in F and only splits on attributes in S.

To compute the optimal tree bt(at;S,F), we use the exhaustive method
(presented originally in [102]) given in Algorithm 16. The algorithm is straight-
forward: it tests each valid item as the root and recurses itself on both branches.

Algorithm 16 Generate algorithm for calculating bt(at;S,F), that is, the
best tree T for at using only S as source and having sets(T) ⊆ F .

Generate (at, S,F) :
1: B ← S ∩ (

⋃
F)

2: C ←TrivialTree (at)
3: for all b ∈ B do
4: G ← {X − b | b ∈ X ∈ F}
5: (Dp,Dn)←Split (D, b)
6: Tp ←Generate (at,G, S,Dp)
7: Tn ←Generate (at,G, S,Dn)
8: C ← C ∪ JoinTree (b, Tp, Tn)
9: end for
10: return arg min

T
{c(T) | T ∈ C}

We can now describe the actual algorithm for constructing decision tree
models with a low cost. Our method automatically discovers the order in
which the attributes can be transmitted most succinct. For this, it needs to
find sets of attributes Si for each attribute ai such that these should be encoded

159

8. Finding Good Itemsets by Packing Data

before ai. The collection S = {S1, . . . , SK} should define an acyclic graph and
the actual trees are bt(ai;Si,F). We use c(S) as a shorthand for the total
complexity

∑
i c(bt(ai;Si,F)) of the best model built from S.

We construct the set S iteratively. At the beginning of the algorithm we
have Si = ∅ and we increase the sets Si one attribute at a time. We allow
ourselves to mark the attributes. The idea is that once the attribute ai is
marked, then we are not allowed to augment Si any longer. At the beginning
none of the nodes are marked.

To describe a single step in the algorithm we consider a graph H = (v0, . . . ,
vK), where v1, . . . , vK represent the attributes and v0 is a special auxiliary
node. We start by adding edges (vi, v0) having the weight c(bt(ai;Si,F)), thus
the cost of the best tree possible from F using only the attributes in Si. Then,
for each unmarked node vi we find out what other extra attribute will help
most to encode it succinct. To do this, we add the edge (vi, vj) for each vj
with the weight c(bt(ai;Si ∪ {aj} ,F)). Now, let U be the minimum directed
spanning tree of H having v0 as the sink. Consider an unmarked node vi such
that (vi, v0) ∈ E(U). That node is now the best choice to be fixed, as it helps
to encode the data best. We therefore mark attribute ai and add ai to each Sj
for each ancestor vj of vi in U . This process is repeated until all attributes are
marked. The details of the algorithm are given in Algorithm 17.

The marking of the attributes guarantees that there can be no cycles in
S. In fact, the marking order also tells us a valid order for transmitting the
attributes. Further, as at least one attribute is marked at each step, this
guarantees that the algorithm terminates in K steps.

Let S be the collection of sources. The following proposition tells us that
the augmentation performed by SetPack does not compromise the optimality
of collections next to S.

Proposition 19. Assume the collection of sources S = {S1, . . . , SK}. Let O =
{O1, . . . , OK} be the collection of sources such that Si ⊆ Oi and |Oi| ≤ |Si|+1.
Let S ′ be the collection that Algorithm 17 produces from S in a single step.
Then there is a collection S∗ such that S′i ⊆ S∗i and that c(S∗) ≤ c(O).

Proof. Let G be the graph constructed by Algorithm 17 for the collection S.
Construct the following graph W : For each Oi such that Oi = Si add the edge
(vi, v0). For each Oi 6= Si add the edge (vi, vj), where {aj} = Oi − Si. But W
is a directed spanning tree of G. Let U be the directed minimum spanning tree
returned by the algorithm. Let S∗i = S′i if (vi, v0) ∈ E(U) and S∗i = S′i∪{aj} if
(vi, vj) ∈ E(U). Note that S∗ defines a valid model and because U is optimal
we must have c(S∗) ≤ c(O).

Corollary 20. Assume that F is a family of itemsets having 2 items, at max-
imum. The algorithm SetPack returns the optimal tree model.

160

8.6. Related Work

Algorithm 17 The algorithm SetPack constructs a decision tree model T
given a family of itemsets F such that sets(T) ⊆ F . Returns a DAG, a family
S = (S1, . . . , SK) of sets of attributes. The trees are Ti = bt(ai, Si,F).

SetPack (D,F) :
1: S = (S1, . . . , SK)← (∅, . . . , ∅)
2: r = (r1, . . . , rK)← (false, . . . , false)
3: V ← {v0, . . . , vK}
4: while there exists ri = false do
5: E ← ∅
6: for i = 1, . . . ,K do
7: E ← E ∪ (vi, v0)
8: w(vi, v0)← c(bt(ai;Si,F))
9: if ri = false then
10: for j = 1, . . . ,K do
11: T ← bt(ai;Si ∪ {aj} ,F)
12: if c(T) ≤ w(vi, v0) then
13: E ← E ∪ (vi, vj), w(vi, vj)← c(T)
14: end if
15: end for
16: end if
17: end for
18: U ← dmst(V,E) {Directed Min. Spanning Tree.}
19: for (vi, v0) ∈ E(U) and ri = false do
20: ri ← true.
21: for vj is a parent of vi in U do
22: Sj ← Sj + ai
23: end for
24: end for
25: end while
26: return S

Let us consider the complexity of the algorithms. The algorithm SetPack
runs in a polynomial time. By using dynamic programming we can show that
Generate runs in O(|F |2) time. We also tested a faster variant of the algo-
rithm in which the exhaustive search in Generate is replaced by the greedy
approach similar to the ID3 algorithm. We call this variant SetPackGreedy.

8.6 Related Work

Finding interesting itemsets is a major research theme in data mining. To
this end, many measures have been suggested over time. A classic measure

161

8. Finding Good Itemsets by Packing Data

for ranking itemsets is frequency, for which there exist efficient search algo-
rithms [5,56]. Other measures involve comparing how much an itemset deviates
from the independence assumption [2,18,19,41]. In yet other approaches more
flexible models are used, such as, Bayes networks [62, 63], Maximum Entropy
estimates [92, 116]. Related are also low-entropy sets: itemsets for which the
entropy of the data is low [59].

Many of these approaches suffer from the fact that they require a user-
defined threshold and further that at low thresholds extremely many itemsets
are returned, many of which convey the same information. To address the
latter problem we can use closed [103] or non-derivable [25] itemsets that pro-
vide a concise representation of the original itemsets. However, these methods
deteriorate even under small amounts of noise.

Alternative to these approaches of describing the pattern set, there are
methods that instead pick groups of itemsets that describe the data well. As
such, we are not the first to embrace the compression approach to data min-
ing [42]. In Chapter 2 we introduced the MDL-based Krimp algorithm to battle
the frequent itemset explosion at low support thresholds. It returns small sub-
sets of itemsets that together capture the distribution of the data well. Like
detailed in the previous chapters, these code tables have been successfully ap-
plied in various data mining problems. While these applications shows the
practicality of the approach, Krimp can only describe the patterns between
the items that are present in the dataset. On the other hand, we consider the
0s and the 1s in the data symmetrically and hence we are able to provide more
detailed descriptions of the data; including patterns between the presence and
absence of items.

More different from our methods are the lossy data description approaches.
These strive to describe just part of the data, and as such may overlook impor-
tant interactions. Summarization [27] is a compression approach that identifies
a group of itemsets such that each transaction is summarized by one set with as
little loss of information as possible. Yet different are pattern teams [69], which
are groups of most-informative length-k itemsets [70], selected through an ex-
ternal interestingness measure. As this approach is computationally intensive,
the number of team members is typically < 10. Bringmann et al. [20] proposed
a similar selection method that can consider larger pattern sets. However, it
also requires the user to choose a quality measure to which the pattern set has
to be optimized, unlike our parameter-free and lossless method.

Alternatively we can view the approach in this chapter as building a global
model for data and then selecting the itemsets that describe the model. This
approach then allows us to use MDL as a model selection technique. In a
related work [117] the authors build decomposable models in order to select a
small family of itemsets that model the data well.

The decision trees returned by our methods, and particularly the DAG

162

8.7. Experiments

that they form, have a passing resemblance to Bayes networks [13]. However,
as both the model construction and complexity weighing differ strongly, so do
the outcomes. To be more precise, in our case the distributions p(x, par(x)) are
modeled and weighted via decision trees whereas in the Bayes network setup
any distribution is weighted equally. Furthermore, we use the correspondence
between the itemsets and the decision trees to output local patterns, as opposed
to Bayes networks which are traditionally used as global models.

8.7 Experiments

This section contains the results of the empirical evaluation of our methods
using toy and real datasets.

Datasets

For the experimental validation of the two packing strategies we use a group of
datasets with strongly differing statistics. From the LUCS/KDD repository [33]
we took a number of often used databases to allow for comparison to other
methods. To test our methods on real data we used the Mammals presence
database and the Courses dataset. The latter contains the enrollment records
of students taking courses at the Department of Computer Science of the Uni-
versity of Helsinki. The Mammals dataset consists of the absence/presence
of European mammals [96] in geographical areas of 50 × 50 kilometers2. The
details of these datasets are provided in Table 8.1.

Table 8.1: Statistics of the datasets used in the experiments.

Dataset |D| K % of 1’s
Anneal 898 71 20.1
Breast 699 16 62.4
Courses 3506 98 4.6
Mammals 2183 40 46.9
Mushroom 8124 119 19.3
Nursery 12960 32 28.1
Pageblocks 5473 44 25.0
Tic–tac–toe 958 29 34.5

2The full version of the dataset is available for research purposes upon request, http:
//www.european-mammals.org.

163

8. Finding Good Itemsets by Packing Data

Experiments with toy datasets

To evaluate whether our method correctly identifies (in)dependencies, we start
our experimentation using two artificial datasets of 2000 transactions and 10
items. For both databases, the data is generated per transaction, and the
presence of the first item is based on a fair coin toss. For the first database,
the other items are similarly generated. However, for the second database, the
presence of an item is 90% dependent on the previous item. As such, both
datasets have item densities of about 50%.

If we apply GreedyPack, our greedy decision tree building method, to
these datasets we see that it is unable to compress the independent database
at all. Opposing, the dependently generated dataset can be compressed into
only 50% of the original number of bits. Inspection of the resulting itemsets
show that the resulting model correctly describes the dependencies in detail:
The resulting 19 itemsets are {a1, . . . , a10, a1a2, . . . , a9a10}.

The greedy method

Recall that our goal is to find high quality descriptions of the data. Following
the MDL principle, the quality of the found descriptions can objectively be
measured by the compression of the data. We present the compressed sizes for
GreedyPack in Table 8.2. The encoding costs c(T) include the size of the
encoded data and the decision trees. The initial costs, as denoted by c(Tb),
are those of encoding the data using naïve single-node TrivialTrees. Each
of these experiments required 1–10 seconds runtime, with an exception of 60s
for Mushroom.

From Table 8.2, we see that all models returned by GreedyPack strongly
reduce the number of bits required to describe the data; this implicitly shows
that good models are returned. The quality can be gauged by taking the com-
pression ratios into account. In general, our greedy method reduces the number
of bits to only half of what the independent model requires. As two specific
examples of the found dependencies, in the Courses dataset the course Data
Mining was packed using Machine Learning, Software Engineering, Information
Retrieval Methods and Data Warehouses. Likewise, AI and Machine Learning
were used to pack the Robotics course.

Like discussed above, our approach and Krimp (Chapter 2) have stark dif-
ferences in what part of the data is considered. However, as both methods
use compression, and result good itemsets, it is insightful to compare the al-
gorithms. For the latter we here allow it to compress as well as possible, and
thus, consider candidates up to as low min-sup thresholds as feasible.

Let us compare between the outcomes of either method. For Krimp these
are itemsets, for ours it is the combination of the decision trees and the related
itemsets. We see that Krimp typically returns fewer itemsets than Greedy-

164

8.7. Experiments

Table 8.2: Compression, number of trees and numbers of extracted itemsets
for the greedy algorithm and Krimp.

GreedyPack

Dataset c(Tb) (bits) c(T) (bits) c(T)
c(Tb) (%) # trees # sets

Anneal 23104 12342 53.4 71 1203
Breast 8099 2998 37.0 16 17
Courses 76326 61685 80.8 98 1230
Mammals 78044 50068 64.2 40 845
Mushroom 442062 115347 26.1 119 999
Nursery 337477 180803 53.6 32 3409
Pageblocks 15280 7611 49.8 44 219
Tic–tac–toe 25123 14137 56.3 29 619

Krimp
compr.

Dataset minsup # bits ratio (%) # sets
Anneal 1 22154 34.6 102
Breast 1 4613 16.9 30
Courses 2 71019 79.3 148
Mammals 200 90192 42.3 254
Mushroom 1 231877 20.9 424
Nursery 1 258898 45.5 260
Pageblocks 1 10911 5.0 53
Tic–tac–toe 1 28812 62.3 162

Pack. However, our method returns itemsets that describe interactions be-
tween both present and absent items.

Next, we observed that especially the initial Krimp compression requires
many more bits than ours, and as such Krimp attains better compression
ratios. However, if we disregard the ratios and look at the raw number of bits
the two methods require, we see that Krimp generally requires twice as many
bits to describe only the 1’s in the data than GreedyPack does to represent
all of the data.

Validation through classification
To further assess the quality of our models we use a simple classification
scheme (see Chapter 2). First, we split the training database into separate

165

8. Finding Good Itemsets by Packing Data

class-databases. We pack each of these. Next, the class labels of the unseen
transactions were assigned according to the model that compressed it best.

We ran these experiments for three databases, viz. Mushroom, Breast and
Anneal. A random 90% of the data was used to train the models, leaving 10%
to test the accuracy on. The accuracy scores we noted, resp. 100%, 98.0%
and 93.4%, are fully comparable to (and for the second, even better than) the
classifiers considered in Chapter 2.5.

Choosing good itemsets

Table 8.3: Candidate Itemsets for Selection, and Selection by Krimp

Candidate Itemsets Krimp
Dataset min-sup # sets # bits # sets
Anneal 175 8837 31196 53
Breast 1 9920 4613 30
Courses 55 5030 73287 93
Mammals 700 7169 124737 125
Mushroom 1000 123277 474240 140
Nursery 50 25777 265064 225
Pageblocks 1 63599 10911 53
Tic–tac–toe 7 34019 28957 159

Table 8.4: Itemset selection by SetPack and SetPackGreedy

SetPack SetPackGreedy

Dataset c(T) c(T)
c(Tb) (%) # sets c(T) c(T)

c(Tb) (%) # sets

Anneal 20777 89.9 103 20781 89.9 69
Breast 5175 63.7 42 5172 63.9 49
Courses 64835 84.9 268 64937 85.1 262
Mammals 65091 83.4 427 65622 84.1 382
Mushroom 313428 70.9 636 262942 59.5 1225
Nursery 314081 93.0 276 314295 93.1 218
Pageblocks 11961 78.3 92 11967 78.3 95
Tic–tac–toe 23118 92.0 620 23616 94.0 277

166

8.8. Discussion

In this subsection we evaluate SetPack, our itemset selection algorithm.
Recall that this algorithm selects itemsets such that they allow for building
succinct encoding decision trees. The difference with GreedyPack is that
in this setup the resulting itemsets should be a subset of a given candidate
family. Here, we consider frequent itemsets as candidates. We set the support
threshold such that the experiments with SetPack were finished within 1

2–2
hours, with an exception of 23 hours for considering the large candidate family
for Mushroom. For comparison we use the same candidates for Krimp. We
also compare to SetPackGreedy, which required 1–12 minutes, 7 minutes
typically, with an exception of 2 1

2 hours for Mushroom.
Comparing the results of this experiment (Tables 8.3 and 8.4) with the

results of GreedyPack in the previous experiment, we see that the selection
process is more strict: now even fewer itemsets are regarded as interesting
enough. Large candidate collections are strongly reduced in number: up to
three orders of magnitude. On the other hand, the compression ratios are still
very good. The reason that GreedyPack produces smaller compression ratios
is because it is allowed to consider any itemset.

Further, the fact alone that even with this very strict selection the compres-
sion ratios are generally well below 90% show that these few sets are indeed of
high importance to describing the major interactions in the data.

If we compare the number of selected sets to Krimp, we see that our method
returns in the same order as many itemsets. These descriptions require far less
bits than those found by Krimp. As such, ours are a better approximation of
the Kolmogorov complexity of the data.

Between SetPack and SetPackGreedy the outcomes are very much
alike; this goes for both the obtained compression as well as the number of
returned itemsets. However, the greedy search of SetPackGreedy allows for
much shorter running times.

8.8 Discussion

The experimentation on our methods validates the quality of the returned
models. The models correctly detect dependencies in the data while ignoring
independencies. Only a small number of itemsets is returned, which are shown
to provide strong compression of the data. By the MDL principle we then
know these describes all important regularities in the data distribution in detail
efficiently and without redundancy. This claim is further supported by the high
classification accuracies our models achieve.

The GreedyPack algorithm generally uses more itemsets and obtains bet-
ter packing ratios than SetPack. While GreedyPack is allowed to use any
itemset, SetPack may only use frequent itemsets. This suggests that we may
able to achieve better ratios if we use different candidates, for example, low-

167

8. Finding Good Itemsets by Packing Data

entropy sets [59].
The running times of the experiments reported in this work range from

seconds to hours and depend mainly on the number of attributes and rows
of the datasets. The exhaustive version SetPack may be slow on very large
candidate sets, however, the greedy version SetPackGreedy can even handle
such families well. Considering that our current implementation is rather naïve
and the fact that both methods are easily parallelized, both GreedyPack and
SetPackGreedy are suited for the analysis of large databases.

The main outcomes of our models are the itemsets that identify the encoding
paths. However, the decision trees from which these sets are extracted can also
be regarded as interesting as these provide an easily interpretable view on
the major interactions in the data. Further, just considering the attributes
used in such a tree as an itemset also allows for simple inspection of the main
associations.

In this work we employ the MDL criterion to identify the optimal model.
Alternatively, one could consider using either BIC or AIC, both of which can
easily be applied to judge between our decision tree-based models.

8.9 Conclusions

In this chapter we presented two methods that find compact sets of high quality
itemsets. Both methods employ compression to select the group of patterns
that describe all interactions in the data best. That is, the data is considered
symmetric and thus both the 0s and 1s are taken into account in these descrip-
tions. Experimentation with our methods showed that high quality models are
returned. Their compact size, typically tens to thousands of itemsets, allow for
easy further analysis of the found interactions.

168

CHAPTER 9

Conclusions

In this thesis we have discussed how pattern mining can be made useful. Pat-
tern mining holds strong promise for extracting useful insight from large collec-
tions of data. In practice, however, patterns are found and returned too easily.
It has proven difficult to select potentially interesting patterns on their individ-
ual merit, leading to high numbers of highly redundant results. This prohibits
the found patterns to be analysed and used practically. This thesis proposes
a different approach, namely to mine the best set of patterns instead. Exten-
sive evaluation and application shows this approach to successfully address our
research goal: making pattern mining useful.

The main contributions of this thesis can be summarised as follows.

• We proposed to use the Minimum Description Length principle to select
small groups of patterns that together describe the data well. To find
these sets of itemsets, we introduced Krimp: a heuristic for finding the
frequent itemsets that together optimally compress the database. Through
extensive evaluation, we showed the high quality of these code tables. Ex-
periments regarding the choices in the algorithm identified the best settings
for the algorithm, making it parameter-free for all practical purposes.

• We showed how the difference between transaction databases can be mea-
sured and characterised through the use of code tables. We defined a differ-
ence measure based on the relative Krimp-compressibility of the datasets.
These differences can be characterised on three levels of increasing de-
tail: 1) comparing the code table pattern usage between the databases,
2) analysing how patterns from the one code table are described by the
code table for the other database, and 3) zooming in to how individual
transactions are described by the different code tables.

169

9. Conclusions

• We specified the problem of identifying the parts of a transaction database
drawn from different distributions in terms of MDL: the best decom-
position minimises the total compressed size. We gave two orthogonal
parameter-free algorithms to identify and characterise the components of
a database. Data is split into homogeneous blocks, such that the compres-
sion is optimised. No prior knowledge on the distributions, distance metric
or the number of components has to be known or specified. Experiments
showed that highly characteristic components are identified.

• We discussed using Krimp code tables as generative models. The resulting
generated data contains the patterns present in the original data, including
correct margins. As such, the generated data is virtually indistinguishable
from the original. Further, the probability of transactions both present
in the original and generated databases can be simply controlled. These
traits make the method a good alternative to data perturbation when
high-quality data has to be released that may not harm privacy.

• We considered the problem of high quality imputation of missing data.
We gave three algorithms for completing data with missing values. All
follow the MDL principle: the best completion is the completion that can
be compressed best. As an objective test we proposed (ε, δ)-correctness to
measure the difference between two databases in terms of count statistics.
The experiments showed this pattern based approach to be superior to
the current state of the art, a global modelling approach, both in terms of
accuracy and count statistics.

• We extended the concept of selecting patterns by MDL to low-entropy
sets; a generalisation of frequent itemsets that identify strong interactions
between attributes. The algorithm we introduced, LESS, selects very small
collections of descriptive low-entropy sets: typically only tens of patterns.
These small numbers and the interpretability of the patterns facilitates
thorough analysis by experts. By using entropy instead of frequency, LESS
is particularly suited for mining dense data. Further, by regarding data
0/1 symmetric, all major interactions in the data are captured, not just
co-occurences.

• Last, but not least, we presented a method that employs refined MDL to
select itemsets that describe all interactions in the data: Pack. As models,
it employs decision trees to compress data 0/1 symmetrically. These trees
can be used to select itemsets from large collection, as well as be mined
directly from data. Following, itemsets can be simply extracted from the
trees. Experimentation showed that high quality models are returned that
provide very high compression ratios. The trees, and the modest number of
resulting itemsets, allow for easy further analysis of the found interactions.

170

This thesis addressed the research goal of making pattern mining useful.
From the results a number of strong conclusions can be drawn.

First, the main conclusion is that to the end of making pattern mining useful
simply the best set of patterns should be mined, as opposed to all patterns that
satisfy certain criteria. As the target to which the set of patterns should be
optimised, the conclusion is that data description is a rather good choice. By
mining the sets of patterns that describe the data best, the outcome provides a
detailed view on the data. Our doctor, whom we met in the introduction, can
use this data description in terms of patterns to overview the data and explore
various parts of it. The patterns provide instant characterisation.

The most important conclusion of this thesis, however, is that the MDL
principle is particularly well-suited for mining useful patterns. By using this
principle to select the set of patterns that describe the data best, we are re-
turned very few, but high-quality, patterns. These patterns characterise the
distribution of the data very well, as is shown by the results presented in this
thesis. Depending on the pattern type and selection method, only tens to thou-
sands of patterns are mined. In these modest numbers, our doctor can easily
inspect these patterns, and use them in further analysis.

The general conclusion of the thesis is that MDL is a natural choice for
finding good solutions to many data mining problems. We have shown that by
stating a variety of data mining problems in terms of MDL very high perfor-
mance can be attained. In particular, we have shown that the sets of patterns
returned by Krimp are generally applicable and provide such high performance
and, again, insightful characterisation of the outcome. Many of the addressed
problems, such as incomplete records and unknown dissimilarity, are often faced
by our doctor when trying to extract knowledge from data: it is therefore safe
to say that the sets of patterns identified through MDL are indeed useful.

Summarising, the results presented in this thesis will make our doctor very
happy. Pattern mining can be made even more useful, however, i.e. the ulterior
peak of usefulness is not yet reached. This thesis shows a way through which
pattern mining delivers on the promise of providing useful insight and practical
application. The approach of using MDL to mine sets of patterns comes with
many new challenges and opportunities. Ideally, for instance, patterns could
be mined directly, without need for first finding large collections of candidate
patterns. Along the same line, it would be good if numeric data could be mined
for descriptive patterns, without having to discretise it in advance. Further,
it would be beneficial to know some bounds, that is, to know how good the
heuristic solutions exactly are with regard to the optimum. Addressing these
issues will make for rather interesting future research that can further increase
the usefulness of pattern mining.

171

Bibliography

1. C.C. Aggarwal, C. Procopiuc, and P.S. Yu. Finding localized associations
in market basket data. Trans Knowledge and Data Engineering, 14(1):51–
62, 2002.

2. C.C. Aggarwal and P.S. Yu. A new framework for itemset generation.
In Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS’98), pages 18–24. ACM Press,
1998.

3. C.C. Aggarwal and P.S. Yu. A condensation approach to privacy preserv-
ing data mining. In Proceedings of the EDBT’04, pages 183–199, 2004.

4. D. Agrawal and C.C. Aggarwal. On the design and quantification of
privacy preserving data mining algorithms. In Proceedings of the SIG-
MOD’01, pages 247–255. ACM, 2001.

5. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. Inkeri Verkamo.
Fast discovery of association rules. In Advances in Knowledge Discovery
and Data Mining, pages 307–328. AAAI, 1996.

6. R. Agrawal and R. Srikant. Fast algorithms for mining association rules.
In Proceedings of the VLDB’94, pages 487–499, 1994.

7. R. Agrawal and R. Srikant. Privacy-preserving data mining. In Proceed-
ings of the SIGMOD’00, pages 439–450. ACM, 2000.

8. P.D. Allison. Missing Data – Quantitative Applications in the Social Sci-
ence. Sage Publishing, 2001.

9. P. Andritsos, P. Tsaparas, R.J. Miller, and K.C. Sevcik. LIMBO: Scalable
clustering of categorical data. In Proceedings of the EDBT’04, pages 124–
146, 2004.

10. M. Bankier. Canadian census minimum change donor imputation method-
ology. In Proceedings of the UN/ECE Workshop on Data Editing, 2000.

11. R. Bathoorn, A. Koopman, and A. Siebes. Reducing the frequent pattern
set. In Proceedings of the ICDM-Workshops’06, pages 55–59, 2006.

12. R. Bayardo. Efficiently mining long patterns from databases. In Proceed-
ings of the SIGMOD’98, pages 85–93, 1998.

173

Bibliography

13. J. Bernardo and A. Smith. Bayesian Theory. Wiley Series in Probability
and Statistics. John Wiley and Sons, 1994.

14. H. Bischof, A. Leonardis, and A. Sleb. Mdl principle for robust vector
quantization. Pattern Analysis and Applications, 2:59–72, 1999.

15. C. Böhm, C. Faloutsos, J-Y. Pan, and C. Plant. Robust information-
theoretic clustering. In Proceedings of the KDD’06, pages 65–75, 2006.

16. I. Bouzouita, S. Elloumi, and S. Ben Yahia. GARC: A new associative
classification approach. In Proceedings of the DaWaK’06, pages 554–565,
2006.

17. T. Brijs, G. Swinnen, K. Vanhoof, and G. Wets. The use of association
rules for product assortment decisions: a case study. In Proceedings of the
KDD’99, pages 254–260, 1999.

18. S. Brin, R. Motwani, and C. Silverstein. Beyond market baskets: General-
izing association rules to correlations. In Proceedings of the SIGMOD’97,
pages 265–276, 1997.

19. S. Brin, R. Motwani, J.D. Ullman, and S. Tsur. Dynamic itemset count-
ing and implication rules for market basket data. In Proceedings of the
SIGMOD’97, pages 255–264, 1997.

20. B. Bringmann and A. Zimmermann. The chosen few: On identifying
valuable patterns. In Proceedings of the ICDM’07, pages 63–72, 2007.

21. R. Bruni. Discrete models for data imputation. Discrete Applied Mathe-
matics, 144(1-2):59–69, 2004.

22. A. Bürgin-Wolff and F Hadziselimovic. Coeliac disease. The Lancet,
362(9393):1418 – 1419, 2003.

23. S. van Buuren. Multiple imputation of discrete and continuous data by
fully conditional specification. Statistical Methods in Medical Research,
16(6):219–242, 2007.

24. I.V. Cadez, P. Smyth, and H. Mannila. Probabilistic modeling of trans-
action data with applications to profiling, visualization, and prediction.
In Proceedings of the KDD’01, pages 37–46, 2001.

25. T. Calders and B. Goethals. Mining all non-derivable frequent itemsets.
In Proceedings of the ECML PKDD’02, pages 74–85, 2002.

26. D. Chakrabarti, S. Papadimitriou, D. S. Modha, and C. Faloutsos. Fully
automatic cross-associations. In Proceedings of the KDD’04, pages 79–88,
2004.

27. V. Chandola and V. Kumar. Summarization – compressing data into an
informative representation. In Proceedings of the ICDM’05, pages 98–105,
2005.

174

Bibliography

28. V. Chandola and V. Kumar. Summarization – compressing data into an
informative representation. Knowl. Inf. Syst., 12(3):355–378, 2007.

29. B. Chen, W.E. Winkler, and R.J. Hemmig. Using the DISCRETE edit
system for ACS surveys. Technical report, U.S. Bureau of the Census,
2000.

30. K. Chen and L. Liu. Privacy preserving data classification with rotation
pertubation. In Proceedings of the ICDM’05, pages 589–592, 2005.

31. R. Cilibrasi and P. Vitanyi. Clustering by compression. IEEE Transac-
tions on Information Theory, 51(4):1523–1545, 2005.

32. E.F. Codd, S.B. Codd, and C.T. Salley. Providing olap (on-lineanalytical
processing) to user analyst: An it mandate. http://www.arborsoft.
com/OLAP.html, 1994.

33. F. Coenen. The LUCS-KDD discretised/normalised ARM and CARM
data library. http://www.csc.liv.ac.uk/~frans/KDD/Software/
LUCS-KDD-DN/DataSets/dataSets.html, 2003.

34. F. Coenen. The LUCS-KDD software library. http://www.csc.liv.ac.
uk/~frans/KDD/Software/, 2004.

35. T.M. Cover and J.A. Thomas. Elements of Information Theory, 2nd ed.
John Wiley and Sons, 2006.

36. B. Crémilleux and J-F. Boulicaut. Simplest rules characterizing classes
generated by δ-free sets. In Proceedings of the KBSAAI’02, pages 33–46,
2002.

37. A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incom-
plete data via the EM algorithm. Journal of the Royal Statistical Society,
Series B, 39(1):1–Ű38, 1977.

38. G. Dong and J. Li. Efficient mining of emerging patterns: Discovering
trends and differences. In Proceedings of the SIGKDD’99, pages 43–52,
1999.

39. G. Dong and J. Li. Mining border descriptions of emerging patterns from
dataset pairs. Knowledge and Information Systems, 8(2):178–202, 2005.

40. R. Duda and P. Hart. Pattern Classification and Scene Analysis. John
Wiley and Sons, New York, 1973.

41. W. DuMouchel and D. Pregibon. Empirical bayes screening for multi-item
associations. In Proceedings of the SIGKDD’01, pages 67–76, 2001.

42. C. Faloutsos and V. Megalooikonomou. On data mining, compression
and Kolmogorov complexity. In Data Mining and Knowledge Discovery,
volume 15, pages 3–20. Springer-Verlag, 2007.

175

Bibliography

43. Y. Freund and R.E. Schapire. A decision-theoretic generalization of
on-line learning and an application to boosting. J. Comp. Sys. Sci.,
55(1):119–139, 1997.

44. N. Friedman. Learning bayesian networks in the presence of missing values
and hidden variables. In Proceedings of the ICML’97, pages 125–Ű133,
1997.

45. N. Friedman. The bayesian structural EM algorithm. In Proceedings of
the UAI’98, pages 129–Ű138, 1998.

46. N. Friedman and G. Elidan. LibB for Windows/Linux programs 2.1.
http://www.cs.huji.ac.il/labs/compbio/LibB, accessed December 2008,
2008.

47. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W.H.Freeman, 1979.

48. F. Geerts, B. Goethals, and T. Mielikäinen. Tiling databases. In Proceed-
ings of the DS’04, pages 278–289, 2004.

49. A. Gionis, H. Mannila, T. Mielikäinen, and P. Tsaparas. Assessing data
mining results via swap randomization. ACM Trans. Knowl. Discov. Data,
1(3):14, 2007.

50. B. Goethals and M. Javeed Zaki. Frequent itemset mining implementa-
tions repository (FIMI). http://fimi.cs.helsinki.fi, 2003.

51. E. Gokcay and J.C. Principe. Information theoretic clustering. Trans.
Pattern Analysis and Machine Intelligence, 24(2):158–171, 2002.

52. P. D. Grünwald. Minimum description length tutorial. In P.D. Grünwald
and I.J. Myung, editors, Advances in Minimum Description Length. MIT
Press, 2005.

53. P. D. Grünwald. The Minimum Description Length Principle. MIT Press,
2007.

54. J. Han, H. Cheng, D. Xin, and X. Yan. Frequent pattern mining: Cur-
rent status and future directions. Data Mining and Knowledge Discovery,
15(1):55–86, 2007.

55. J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan
Kaufmann, 2001.

56. J. Han and J. Pei. Mining frequent patterns by pattern-growth: method-
ology and implications. SIGKDD Explorations Newsletter, 2(2):14–20,
2000.

57. D. Hand, N. Adams, and R. Bolton, editors. Pattern Detection and Dis-
covery. Springer-Verlag, 2002.

176

Bibliography

58. H. Heikinheimo, M. Fortelius, J. Eronen, and H. Mannila. Biogeography
of european land mammals shows environmentally distinct and spatial
coherent clusters. Biogeogr., 34(6):1053–1064, 2007.

59. H. Heikinheimo, E. Hinkkanen, H. Mannila, T. Mielikäinen, and J. K.
Seppänen. Finding low-entropy sets and trees from binary data. In Pro-
ceedings of the KDD’07, pages 350–359, 2007.

60. Hannes Heikinheimo, Jilles Vreeken, Arno Siebes, and Heikki Mannila.
Low-entropy set selection. In Proceedings of the SDM’09, pages 569–579,
2009.

61. Z. Huang, W. Du, and B. Chen. Deriving private information from ran-
domized data. In Proceedings of the SIGMOD’05. ACM, 2005.

62. S. Jaroszewicz and T. Scheffer. Fast discovery of unexpected patterns in
data, relative to a bayesian network. In Proceedings of the KDD’05, pages
118–127, 2005.

63. S. Jaroszewicz and D.A. Simovici. Interestingness of frequent itemsets
using bayesian networks as background knowledge. In Proceedings of the
KDD’04, pages 178–186, 2004.

64. H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar. Random-data per-
turbation techniques and privacy-preserving data mining. Knowledge and
Information Systems, 4(7):387–414, 2005.

65. Richard M. Karp. Reducibility among combinatorial problems. In R.E.
Miller and J.W. Thatcher, editors, Proc. of a Symp. on the Complexity of
Computer Computations, pages 85–103, New York, USA, 1972. Plenum
Press.

66. Y. Ke, J. Cheng, and W. Ng. Mining quantitative correlated patterns
using an information-theoretic approach. In Proceedings of the KDD’06,
pages 227–236, 2006.

67. E. Keogh, S. Lonardi, and C.A. Ratanamahatana. Towards parameter-
free data mining. In Proceedings of the KDD’04, pages 206–215, 2004.

68. E. Keogh, S. Lonardi, C.A. Ratanamahatana, L. Wei, S-H. Lee, and
J. Handley. Compression-based data mining of sequential data. Data
Min. Knowl. Discov., 14(1):99–129, 2007.

69. A. J. Knobbe and E. K. Y. Ho. Pattern teams. In Proceedings of the
ECML PKDD’06, pages 577–584, 2006.

70. A.J. Knobbe and E.K. Y. Ho. Maximally informative k-itemsets and their
efficient discovery. In Proceedings of the KDD’06, pages 237–244, 2006.

71. R. Kohavi, C. Brodley, B. Frasca, L. Mason, and Z. Zheng. KDD-Cup 2000
organizers’ report: Peeling the onion. SIGKDD Explorations, 2(2):86–98,
2000. urlhttp://www.ecn.purdue.edu/KDDCUP.

177

Bibliography

72. P. Kontkanen and P. Myllymäki. A linear-time algorithm for computing
the multinomial stochastic complexity. Information Processing Letters,
103(6):227–233, 2007.

73. P. Kontkanen, P. Myllymäki, W. Buntine, J. Rissanen, and H. Tirri. An
mdl framework for clustering. Technical report, HIIT, 2004. Technical
Report 2004-6.

74. A. Koopman and A. Siebes. Discovering relational items sets efficiently.
In Mohammed Zaki and Ke Wang, editors, Proceedings of the SDM’08,
pages 108–119. SIAM, 2008.

75. A. Koopman and A. Siebes. Characteristic relational patterns. In Pro-
ceedings of the KDD’09, pages 437–446, 2009.

76. J. Kovar and W.E. Winkler. Comparison of GEIS and SPEER for editing
economic data. Technical report, U.S. Bureau of the Census, 2000.

77. M. Koyotürk, A. Grama, and N. Ramakrishnan. Compression, clustering,
and pattern discovery in very high-dimensional discrete-attribute data
sets. Trans Knowledge and Data Engineering, 17(4):447–461, 2005.

78. M. van Leeuwen, J. Vreeken, and A. Siebes. Compression picks the item
sets that matter. In Proceedings of the ECML PKDD’06, pages 585–Ű592,
2006.

79. M. van Leeuwen, J. Vreeken, and A. Siebes. Identifying the components.
Data Min. Knowl. Discov., 19(2):173–292, 2009.

80. M. Li, X. Chen, X. Li, B. Ma, and P.M.B. Vitányi. The similarity metric.
IEEE Trans. on Information Theory, 50(12):3250–3264, 2004.

81. M. Li and P. Vitányi. An Introduction to Kolmogorov Complexity and its
Applications. Springer-Verlag, 1993.

82. C.K. Liew, U.J. Choi, and C.J. Liew. A data distortion by probability
distribution. ACM Trans. on Database Systems, 3(10):395–411, 1985.

83. R.J.A. Little and D.B. Rubin. Statistical Analysis with Missing Data (2nd
Edition). John Wiley and Sons, 2002.

84. B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule
mining. In Proceedings of the KDD’98, pages 80–Ű86, 1998.

85. G. Liu, H. Lu, J. Xu Yu, W. Wei, and X. Xiao. AFOPT: An efficient
implementation of pattern growth approach. In Proceedings of the 2nd
workshop on Frequent Itemset Mining Implementations, 2004.

86. K. Liu, C. Giannella, and H. Kargupta. An attacker’s view of distance
preserving maps for privacy preserving data mining. In Proceedings of the
ECMLPKDD’06, pages 297–308, 2006.

178

Bibliography

87. A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam.
l-diversity: Privacy beyond k-anonymity. In Proceedings of the ICDE’06,
pages 24–35, 2006.

88. J. MacQueen. Some methods for classification and analysis of multivari-
ate observations. In Proceedings of the 5th Symposium on Mathematical
Statistics and Probability, 1967.

89. H. Mannila and H. Toivonen. Multiple uses of frequent sets and condensed
representations. In Proceedings of the KDD’96, pages 189–194, 1996.

90. H. Mannila and H. Toivonen. Levelwise search and borders of theories
in knowledge discovery. Data Mining and Knowledge Discovery, pages
241–258, 1997.

91. M. Mehta, R. Agrawal, and J. Rissanen. Sliq: A fast scalable classifier for
data mining. In Advances in database technology, pages 18–32. Springer,
1996.

92. R. Meo. Theory of dependence values. ACM Trans. Database Syst.,
25(3):380–406, 2000.

93. D. Meretakis, H. Lu, and B. Wüthrich. A study on the performance of
large bayes classifier. In Proceedings of the ECML’00, pages 271–279,
2000.

94. S. Merugu and J. Ghosh. Privacy-preserving distributed clustering using
generative models. In Proceedings of the ICDM’03, pages 211–218, 2003.

95. T. Mielikäinen and H. Mannila. The pattern ordering problem. In Pro-
ceedings of the ECML PKDD’03, pages 327–338, 2003.

96. A.J. Mitchell-Jones, G. Amori, W. Bogdanowicz, B. Krystufek, P.J. H.
Reijnders, F. Spitzenberger, M. Stubbe, J.B.M. Thissen, V. Vohralik, and
J. Zima. The Atlas of European Mammals. Academic Press, 1999.

97. K. Morik, J-F. Boulicaut, and A. Siebes, editors. Local Pattern Detection.
Springer-Verlag, 2005.

98. S. Morishita and J. Sese. Traversing itemset lattice with statistical metric
pruning. In Proceedings of the PODS’00, pages 226–236, 2000.

99. K. Murphy. Bayes net toolbox for Matlab. http://www.cs.ubc.ca/
\~{}murphyk/Software/BNT/, accessed December 2008, 1997.

100. K.V.S. Murthy. On growing better decision trees from data. PhD thesis,
Johns Hopkins Univ., Baltimore, 1996.

101. S. Myllykangas, J. Himberg, T. Böhling, B. Nagy, J. Hollmén, and
S. Knuutila. Dna copy number amplification profiling of human neo-
plasms. Oncogene, 25(55):7324Ű7332, 2006.

102. S. Nijssen and É. Fromont. Mining optimal decision trees from itemset
lattices. In Proceedings of the KDD’07, pages 530–539, 2007.

179

Bibliography

103. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent
closed itemsets for association rules. In Proceedings of the ICDT’99, pages
398–416, 1999.

104. R. Pensa, C. Robardet, and J-F. Boulicaut. A bi-clustering framework for
categorical data. In Proceedings of the ECML PKDD’05, pages 643–650,
2005.

105. B. Pfahringer. Compression-based feature subset selection. In Proceedings
of the IJCAI’95 Workshop on Data Engineering for Inductive Learning,
pages 109–119, 1995.

106. J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan-Kaufmann,
Los Altos, California, 1993.

107. J.R. Quinlan. FOIL: a midterm report. In Proceedings of the ECML’93,
1993.

108. J. Rissanen. Modeling by shortest data description. Automatica,
14(1):465–471, 1978.

109. J. Rissanen. Fisher information and stochastic complexity. IEEE Trans-
actions on Information Theory, 42(1):40–47, 1996.

110. D.B. Rubin. Multiple imputation for nonresponse in surveys. John Wiley
and Sons, 1987.

111. P. Samarati. Protecting respondents’ identities in microdata release. IEEE
Trans. on Knowledge and Data Engineering, 13(6):1010–1027, 2001.

112. J.L. Schafer. Analysis of incomplete multivariate data. Monographs on
Statistics and Applied Probability, 72:1–448, 1997.

113. A. Siebes, J. Vreeken, and M. van Leeuwen. Item sets that compress. In
Proceedings of the SDM’06, pages 393–404, 2006.

114. A. Stuart, K. Ord, and S. Arnold. Classical Inference and the Linear
Model, volume 2A of Kendall’s Advanced Theory of Statistics. Arnold,
1999.

115. J. Sun, C. Faloutsos, S. Papadimitriou, and P.S. Yu. Graphscope:
parameter-free mining of large time-evolving graphs. In Proceedings of
the KDD’07, pages 687–696, 2007.

116. N. Tatti. Maximum entropy based significance of itemsets. Knowledge
and Information Systems (KAIS), 17(1):57–77, 2008.

117. N. Tatti and H. Heikinheimo. Decomposable families of itemsets. In
Proceedings of the ECMLPKDD’08, 2008.

118. N. Tatti and J. Vreeken. Finding good itemsets by packing data. In
Proceedings of the ICDM’08, pages 588–597, 2008.

180

Bibliography

119. N. Tishby, F.C. Pereira, and W. Bialek. The information bottleneck meth-
ods. In Proceedings of the Allerton Conf. on Communication, Control and
Computing, pages 368–377, 1999.

120. D. Titterington, A. Smith, and U. Makov. Statistical Analysis of Finite
Mixture Distributions. John Wiley and Sons, 1985.

121. V.N. Vapnik. Statistical Learning Theory. John Wiley and Sons, 1998.
122. J. Vreeken and A. Siebes. Filling in the blanks – Krimp minimisation for

missing data. In Proceedings of the ICDM’08, pages 1067–1072, 2008.
123. J. Vreeken, M. van Leeuwen, and A. Siebes. Krimp: Mining itemsets that

compress. Data Mining and Knowledge Discovery. accepted for publica-
tion.

124. J. Vreeken, M. van Leeuwen, and A. Siebes. Characterising the difference.
In Proceedings of the KDD’07, pages 765–Ű774, 2007.

125. J. Vreeken, M. van Leeuwen, and A. Siebes. Preserving privacy through
data generation. In Proceedings of the ICDM’07, pages 685–690, 2007.

126. C.S. Wallace. Statistical and inductive inference by minimum message
length. Springer-Verlag, 2005.

127. J. Wang and G. Karypis. SUMMARY: Efficiently summarizing transac-
tions for clustering. In Proceedings of the ICDM’04, pages 241–248, 2004.

128. J. Wang and G. Karypis. HARMONY: Efficiently mining the best rules
for classification. In Proceedings of the SDM’05, pages 205–216, 2005.

129. J. Wang and G. Karypis. On efficiently summarizing categorical
databases. Knowl. Inf. Syst., 9(1):19–37, 2006.

130. K. Wang, C. Xu, and B. Liu. Clustering transactions using large items.
In Proceedings of the CIKM’99, pages 483–490, 1999.

131. H.R. Warner, A.F. Toronto, L.R. Veasey, and R. Stephenson. A mathe-
matical model for medical diagnosis, application to congenital heart dis-
ease. Journal of the American Medical Association, 177:177–184, 1961.

132. I. Wasito and B. Mirkin. Nearest neighbour approach in the least-squares
data imputation algorithms. Journal of Information Sciences, 167:1–25,
2005.

133. I.H. Witten and Eibe Frank. Data Mining:Practical machine learning tools
and techniques. Morgan Kaufmann, San Francisco, 2nd edition, 2005.

134. Y. Xiang, R. Jin, D. Fuhry, and F.F. Dragan. Succinct summarization of
transactional databases: an overlapped hyperrectangle scheme. In Pro-
ceedigns of the KDD’08, pages 758–766, 2008.

135. X. Yan, H. Cheng, J. Han, and D. Xin. Summarizing itemset patterns:
A profile-based approach. In Proceedings of the KDD’05, pages 314–323,
2005.

181

Bibliography

136. X. Yin and J. Han. CPAR: Classification based on predictive association
rules. In Proceedings of the SDM’03, pages 331–335, 2003.

137. X. Zhang, D. Guozhu, and K. Ramamohanarao. Information-based
classification by aggregating emerging patterns. In Proceedings of the
IDEAL’00, pages 48–53, 2000.

182

Index

ACLD(D1, CT2), 60
AS(Dpriv,Dorig), 93
CS, 12
CT , 12
codeCT (X), 12
cover(CT, t), 12
DS(Dx,Dy), 63
L(D | CT), 14
L(D, CT), 31
L(codeCT (X)), 13
L(t | CT), 14
LD(CT), 15
NAS(Dpriv,Dorig), 93
ST , 14
suppD(X), 8
usageD(X), 13

a priori property, 8
Algorithm

component identification
data-driven -, 83
model-driven -, 79

Imputation
KC, 115
KM, 115
Krimp Completion, see KC
Krimp Minimisation, see KM
SC, 114
Simple Completion, see SC

Krimp, 22
- cat. data generator, 96
- classifier, 28

post-acceptance pruning, 23
standard code table, 18
standard cover, 19

LESS, 140
greedy cover, 139
optimal cover, 138

Pack
Generate, 159
GreedyPack, 157
SetPack, 161

anonymity score, 93
normalised, 93

Bayes optimal choice, 27
bi-clustering, 74
boosting, 74

candidate set, 16
clustering, 74
code lengths, 13
code table

Krimp, 12
encoded size, 15

coding set, 12
completion problem, 113
condensation-based pertubation, 91
cover function

Krimp, 12

data pertubation, 91
dissimilarity measure, 63
distance metric, 63

183

Index

encoded size
code table

Krimp, 15

hype
dramatic, 10, 50, 66, 122
extremely, 50, 106, 141, 162
gigantic, 2
humongous, 9, 16
major, 30, 94, 145, 161, 167
state-of-the-art, 49, 107
truly, 58, 61
vast, 112

index, 183
induction problem, 9
itemset usage, 13

Kolmogorov complexity, 11
Krimp

cover(CT, t), 12
cover function, 12
standard candidate order, 20
standard cover order, 19

Krimp classifier, 27

MAR, 109
MCAR, 109
MDL, 9, 11
minimal coding set problem, 16
Minimum Description Length, see

MDL
MinimumMessage Length, see MML
missing data, 109
mixture modelling, 74
MML, 11

NMAR, 110
normalised anonymity score, 93

optimal code length, 13

PPDM, see privacy preserving data
mining

prefix code, 12
prefix-free code, 12
privacy preserving data mining, 90
Problem

completion problem, 113
minimal coding set problem, 16
optimal partitioning problem,

76

recursive, see recursive
relative compressed size, 31

simply, 2, 3, 12–15, 29, 46, 60, 77,
83, 110, 128, 130, 131, 134,
155, 170, 171

standard code table, 14
standard encoding, 14
support, 8
swap randomisation, 38

theory mining, 8

184

Samenvatting

Het ontdekken van patronen is een belangrijk onderdeel van ‘data mining’.
Data mining is een relatief nieuw onderzoeksgebied binnen de informatica dat
zich richt op het vergaren van nieuwe kennis uit bestaande gegevens. Netter
gezegd, data mining betreft het extraheren van niet-triviale inzichten uit grote
verzamelingen van gegevens.

Een patroon is simpelweg een vorm van regelmaat. Voorbeelden van pa-
tronen kunnen producten zijn die vaak gezamenlijk verkocht worden, of genen
die vooral actief zijn bij een bepaalde ziekte, of gedragingen van klanten die
winst opbrachten, enzovoorts. Dat zulke patronen nuttig inzicht kunnen bie-
den aan experts moge duidelijk zijn. Het extraheren van dergelijke patronen uit
gegevens noemt men ‘pattern mining’, of, in goed Nederlands, patroon mining.

In het algemeen is het vinden van een patroon zeer eenvoudig. Een inte-
ressant patroon vinden is echter heel andere koek. Dit proefschrift behandelt
hoe juist interessante patronen gevonden kunnen worden. Het gaat over hoe
een behapbaar aantal, zeer interessante, regelmatigheden te vinden. En, in het
bijzonder, hoe deze patronen nuttig te gebruiken zijn bij het verder analyseren
van gegevens. Grof gezegd gaat het over het bruikbaar maken van patroon
mining.

Bestaande technieken vinden namelijk met gemak enorme aantallen patro-
nen. Vaak worden meer patronen gevonden dan dat er gegevens in de database
zitten. Dit komt met name doordat het stuk voor stuk toetsen of een patroon
interessant is niet goed blijkt te werken: het is heel lastig om de mate van
interessantheid te beoordelen. Doen we dit te streng, dan worden er niets dan
bekende feiten gevonden. Doen we dit te soepel, dan worden al snel vrijwel alle
patronen opgeleverd. Veel patronen zijn namelijk kleine variaties op hetzelfde
thema, en worden dan allemaal als interessant bestempeld. Bestaande voorstel-
len om overtollige patronen te verwijderen bieden slechts beperkte verlichting.

In dit licht bezien is patroon mining dus nog niet bruikbaar: experts kunnen
de resultaten niet zonder meer analyseren, en ook anderzijds zijn de patronen
lastig toepasbaar. Dit proefschrift stelt voor om, in tegenstelling tot álle patro-
nen die aan bepaalde eisen voldoen, de beste groep patronen te vinden. Zo’n
groep dient de gegevens goed te beschrijven, met zo min mogelijk overbodige

185

Samenvatting

details. Om dit te beoordelen gebruiken we het zogenoemde Minimum Descrip-
tion Length principe. Dit principe stelt dat de meest compacte beschrijving
van de gegevens tevens de beste beschrijving is. Anders gezegd, we zijn op zoek
naar de groep patronen die de gegevens het beste comprimeren.

Het idee is om patronen in de data te vervangen door codewoorden. Hoe
vaker een patroon gebruikt wordt om een stuk data te beschrijven, des te
korter het codewoord. Door het vergelijken van de lengte van de verkregen
beschrijving, dat wil zeggen, de gecodeerde gegevens en het codeboek, kunnen
we bepalen of een groep patronen beter is dan een andere groep. Via deze weg
kan gezocht worden naar de beste groep patronen.

Om deze beste groep te vinden introduceren we drie verschillende technie-
ken, genaamd Krimp, LESS en Pack. Elk pakt het probleem op een andere
manier aan, met eigen voor- en nadelen. Gemeen hebben de drie dat ze com-
pacte groepjes patronen opleveren: slechts tien- tot duizendtallen, in plaats
van miljarden. Hiermee lossen alle drie de explosie van het aantal gevonden
patronen op. Via onafhankelijke toetsing wordt getoond dat deze groepjes pa-
tronen de gegevens goed karakteriseren. Zo kunnen ze op natuurlijke wijze, en
met zeer goede prestaties, gebruikt worden voor classificatie.

De bruikbaarheid van de patronen wordt verder getoetst aan de hand van
een aantal open problemen. Zo worden getoond dat via deze patronen het ver-
schil tussen databases gemeten en gekarakteriseerd kan worden. Hierbij kan
gedacht worden aan het verschil tussen groepen patienten, of dat van verkoop-
patronen tussen supermarkten. Gegevens kunnen ook op basis van dergelijke
karakteristieken gegroepeerd worden: groepen klanten met hetzelfde koopge-
drag, of patienten met dezelfde patronen in leefstijl, behandelgegevens of DNA.

De gevonden patronen kunnen ook worden gebruikt om data met dezelfde
karakteristieken als het origineel te genereren. Dit lost het privacy-probleem op
dat optreedt wanneer patient-databases publiek gemaakt moeten worden. De
gegenereerde gegevens zijn praktisch identiek aan het origineel, met het grote
verschil dat de kans dat er een bestaand persoon in aangetroffen wordt nihil is.

Veel databases bevatten ontbrekende informatie, denk aan incompleet inge-
vulde formulieren of foutieve metingen bij DNA-analyse. We introduceren drie
methoden die, gebruik makend van compressie, zeer accurate schattingen voor
de missende waarden geven. Hierbij worden specifiek de karakteristieken van
de database gevolgd en behouden, waardoor vervolganalyse van de aangevulde
gegevens zoveel mogelijk vrij is van verstoringen.

Kort gezegd, dit proefschrift beschrijft hoe een klein aantal, zeer interes-
sante, patronen gevonden kan worden. Deze groepen kunnen gemakkelijk door
experts geinspecteerd worden en bieden gedetailleerd inzicht in de te analyseren
gegevens. Bovendien toont de succesvolle toepassing van deze patronen, in vijf
verschillende data mining problemen, aan dat ze met recht bruikbaar genoemd
mogen worden.

186

Dankwoord

Het is cliché, en waar, promoveren doe je niet in je eentje. Daarom zou
ik iedereen die linksom, rechtsom of zijdelings bij mijn promotie betrokken is
geweest heel graag willen bedanken: zonder jullie had het nooit zo’n leuke en
leerzame tijd geworden.

Beste Arno, ik had me geen betere promotor of begeleider kunnen wensen.
Net zo makkelijk als dat je ooit een ‘leuk-garantie’ durfde te geven voor een
vak waarvan je de inhoud zelf nog niet bepaald had, had je dat voor mijn pro-
motieonderzoek kunnen doen. In de afgelopen vier jaar heb ik van de geboden
vrijheid genoten, veel geleerd en aan je commentaar gehad. Dank je wel.

I would like to thank the members of the reading committee, Heikki Man-
nila, Johannes Fürnkranz, Peter Grünwald, Toon Calders and Linda van der
Gaag for carefully reading, considering and approving my thesis.

Beste (voorheen) leden van de ADA (voorheen LDD) groep, Ad, Hans,
Lennart, Arno, Edwin, Ronnie, Carsten, Rainer, Subianto, Jeroen, Nicola,
Diyah, dank jullie wel voor het bieden van een heel gezellige en productieve
sfeer, als wel het inzien van het belang van ontspanning. Zonder jullie had
ik nooit zo veel kunnen oefenen in darts, tafeltennis, schaken, de introquiz of
whatthemovie. De schoolboekenborrel, geboden oppertunities en vele whisky’s
staan in m’n geheugen gegrift.

Beste Arne, naast een hele goede vriend was je een super-kamergenoot.
Ik wil je in het bijzonder heel graag bedanken voor alle gekkigheid. Canons
fluiten of stoelskwieken is en blijft teamsport. Dat A113 over een tijdje maar
een come-back van jewelste mag beleven.

Matthijs, wat moet ik zeggen, na tig jaar vrienden, studiegenoten, collega’s
en co-auteurs te zijn? Genoeg is genoeg? Ja, wat niezen betreft, ja. Verder,
nee, echt niet. Laten we nog veel mooie papers schrijven en biri’s drinken. Wat
die come-back betreft, ik reken op je.

I would like to thank my Finnish co-authors. Dear Heikki, thank you for
inviting me to Helsinki. Dear Hannes, many thanks for showing me around
town, a fruitful research project and providing me the opportunity to swim in
a nearly frozen Baltic. Dear Nikolaj, you are a theory monster. Thanks for the
collaboration, hopefully many may follow.

Maar bovenal wil ik mijn familie heel erg bedanken. Lieve Ieke, je bent een
topzus. Lieve paps en mams, dank jullie wel voor alle steun, zorg, alles.

Antwerpen, Oktober 2009

Curriculum Vitae

Jilles Vreeken was born in Amsterdam on the 21st of March in 1981. He got
his shoelace tying diploma in 1985, swimming levels A and B in resp. 1986
and 1987. In 1999 he graduated from O.S.G. Broklede in Breukelen at the
athenaeum level. He studied computer science (‘informatica’) at Universiteit
Utrecht and graduated with honours in 2004. During his studies, in 2003, he
passed his drivers license test. In 2005 he started his Ph.D. studies at the Large
Distributed Databases group of professor Arno Siebes.

Jilles is interested in photography, enjoys travelling to remote locations,
has a rather broad taste and collection of music and is surprisingly good at
guessing the movie title from stills of movies he hasn’t seen yet. He greatly
disliked writing his master thesis. Much to his surprise, he disliked writing his
Ph.D. thesis many times less. However, now that it is finished, he very much
looks forward to doing fresh research again, as that is both his favourite mind
state, hobby and job.

189

SIKS Dissertation Series

1998 1 J. van den Akker (CWI), DEGAS - An Active, Temporal Database of Autonomous Objects
2 F. Wiesman (UM), Information Retrieval by Graphically Browsing Meta-Information
3 A.N.S. Steuten (TUD), A Contribution to the Linguistic Analysis of Business Conversations

within the Language/Action Perspective
4 D. Breuker (UM), Memory versus Search in Games
5 E.W. Oskamp (RUL), Computerondersteuning bij Straftopmeting

1999 1 M. Sloof (VU), Physiology of Quality Change Modelling
2 R. Potharst (EUR), Classification using decision trees and neural nets
3 D. Beal (UM), The Nature of Minimax Search
4 J. Penders (UM), The practical Art of Moving Physical Objects
5 A. de Moor (KUB), Empowering Communities
6 N.J.E. Wijngaards (VU), Re-design of compositional systems
7 D. Spelt (UT), Verification support for object database design
8 J.H.J. Lenting (UM), Informed Gambling: Conception and Analysis for Discrete Reallocation

2000 1 F. Niessink (VU), Perspectives on Improving Software Maintenance
2 K. Holtman (TUE), Prototyping of CMS Storage Management
3 C.M.T. Metselaar (UVA), Sociaal-organisatorische gevolgen van kennistechnologie
4 G. de Haan (VU), ETAG, A Formal Model of Competence Knowledge for User Interface Design
5 R. van der Pol (UM), Knowledge-based Query Formulation in Information Retrieval
6 R. van Eijk (UU), Programming Languages for Agent Communication
7 N. Peek (UU), Decision-theoretic Planning of Clinical Patient Management
8 V. Coupé (EUR), Sensitivity Analyis of Decision-Theoretic Networks
9 F. Waas (CWI), Image DBMS design considerations, algorithms and architecture
11 J. Karlsson (CWI), Scalable Distributed Data Structures for Database Management

2001 1 S. Renooij (UU), Qualitative Approaches to Quantifying Probabilistic Networks
2 K. Hindriks (UU), Agent Programming Languages: Programming with Mental Models
3 M. van Someren (UVA), Learning as problem solving
4 E. Smirnov (UM), Conjunctive and disjunctive version spaces with boundary sets
5 J. van Ossenbruggen (VU), Processing Structured Hypermedia: A Matter of Style
6 M. van Welie (VU), Task-based User Interface Design
7 B. Schonhage (VU), Diva: Architectural Perspectives on Information Visualization
8 P. van Eck (VU), A Compositional Semantic Structure for Multi-Agent Systems Dynamics
9 P.J. ’t Hoen (RUL), Towards distributed development of large object-oriented models
10 M. Sierhuis (UVA), Modeling and Simulating Work Practice BRAHMS
11 T.M. van Engers (VU), Knowledge management: mental models in business systems design

2002 1 N. Lassing (VU), Architecture-Level Modifiability Analysis
2 R. van Zwol (UT), Modelling and Searching Web-based Document Collections
3 H.E. Blok (UT), Database Optimization Aspects for Information Retrieval
4 J.R. Castelo Valdueza (UU), The Discrete Acyclic Digraph Markov Model in Data Mining
5 R. Serban (VU), The Private Cyberspace
6 L. Mommers (UL), Applied legal epistemology
7 P. Boncz (CWI), Monet: A Next-Generation DBMS Kernel For Query-Intensive Applications
8 J. Gordijn (VU), Value-based requirements engineering
9 W-J. van den Heuvel (KUB), Integrating business applications with objectified legacy systems
10 B. Sheppard (UM), Towards Perfect Play of Scrabble
11 W.C.A. Wijngaards (VU), Agent based modelling of dynamics
12 A. Schmidt (UVA), Processing XML in Database Systems
13 H. Wu (TUE), A Reference Architecture for Adaptive Hypermedia Applications
14 W. de Vries (UU), Agent Interaction
15 R. Eshuis (UT), Semantics and Verification of UML Activity Diagrams for Workflow Modelling
16 P. van Langen (VU), The Anatomy of Design: Foundations, Models and Applications

191

SIKS Dissertation Series

17 S. Manegold (UVA), Understanding, modeling, and improving main-memory db performance

2003 1 H. Stuckenschmidt (VU), Ontology-based information sharing in weakly structd environments
2 J. Broersen (VU), Modal Action Logics for Reasoning About Reactive Systems
3 M. Schuemie (TUD), Human-computer interaction and presence in VR exposure therapy
4 M. Petkovic (UT), Content-Based Video Retrieval Supported by Database Technology
5 J. Lehmann (UVA), Causation in Artificial Intelligence and Law - A modelling approach
6 B. van Schooten (UT), Development and Specification of Virtual Environments
7 M. Jansen (UVA), Formal Explorations of Knowledge Intensive Tasks
8 Y. Ran (UM), Repair Based Scheduling
9 R. Kortmann (UM), The Resolution of Visually Guided Behaviour
10 A. Lincke (UT), Some experimental studies on medium, innovation context and culture
11 S. Keizer (UT), Reasoning under uncertainty in natural language dialogue
12 R. Ordelman (UT), Dutch Speech Recognition in Multimedia Information Retrieval
13 J. Donkers (UM), Nosce Hostem - Searching with Opponent Models
14 S. Hoppenbrouwers (KUN), Freezing Language
15 M. de Weerdt (TUD), Plan Merging in Multi-Agent Systems
16 M. Windhouwer (CWI), Feature grammar systems
17 D. Jansen (UT), Extensions of Statecharts with Probability, Time, and Stochastic Timing
18 L. Kocsis (UM), Learning Search Decisions

2004 1 V. Dignum (UU), A Model for Organizational Interaction: Based on Agents, Founded in Logic
2 L. Xu (UT), Monitoring Multi-party Contracts for E-business
3 P. Groot (VU), A theoretical and empirical analysis of approx in symbolic problem solving
4 C. van Aart (UVA), Organizational Principles for Multi-Agent Architectures
5 V. Popova (EUR), Knowledge Discovery and Monotonicity
6 B-J. Hommes (TUD), The Evaluation of Business Process Modeling Techniques
7 E. Boltjes (UM), Voorbeeldig onderwijs
8 J. Verbeek (UM), Politie en de Nieuwe Internationale Informatiemarkt
9 M. Caminada (VU), For the Sake of the Argument
10 S. Kabel (UVA), Knowledge-rich Indexing of Learning-objects
11 M. Klein (VU), Change Management for Distributed Ontologies
12 T. Duy Bui (UT), Creating Emotions and Facial Expressions for Embodied Agents
13 W. Jamroga (UT), Using Multiple Models of Reality: On Agents who Know how to Play
14 P. Harrenstein (UU), Logic in Conflict. Logical Explorations in Strategic Equilibrium
15 A. Knobbe (UU), Multi-Relational Data Mining
16 F. Divina (VU), Hybrid Genetic Relational Search for Inductive Learning
17 M. Winands (UM), Informed Search in Complex Games
18 V. Bessa Machado (UVA), Supporting the Construction of Qualitative Knowledge Models
19 T. Westerveld (UT), Using Generative Probabilistic Models for Multimedia Retrieval
20 M. Evers (Nyenrode), Learning from Design: Facilitating Multidisciplinary Design Teams

2005 1 F. Verdenius (UVA), Methodological Aspects of Designing Induction-Based Applications
2 E. van der Werf (UM), AI techniques for the Game of Go
3 F. Grootjen (RUN), A Pragmatic Approach to the Conceptualisation of Language
4 N. Meratnia (UT), Towards Database Support for Moving Object data
5 G. Infante-Lopez (UVA), Two-Level Probabilistic Grammars for Natural Language Parsing
6 P. Spronck (UM), Adaptive Game AI
7 F. Frasincar (TUE), Hypermedia presentation generation for semantic web systems
8 R. Vdovjak (TUE), A model-driven approach for building ontology-based web applications
9 J. Broekstra (VU), Storage, Querying and Inferencing for Semantic Web Languages
10 A. Bouwer (UVA), Explaining behaviour: using qualitative simulation in interactive learning
11 E. Ogston (VU), Agent Based Matchmaking and Clustering
12 C. Boer (EUR), Distributed Simulation in Industry
13 F. Hamburg (UL), Een Computermodel voor het ondersteunen van euthanasiebeslissingen
14 B. Omelayenko (VU), Web-Service configuration on the Semantic Web
15 T. Bosse (VU), Analysis of the Dynamics of Cognitive Processes
16 J. Graaumans (UU), Usability of XML Query Languages
17 B. Shishkov (TUD), Software Specification Based on Re-usable Business Components
18 D. Sent (UU), Test-selection Strategies for Probabilistic Networks
19 M. van Dartel (UM), Situated Representation
20 C. Coteanu (UL), Cyber Consumer Law, State of the Art and Perspectives
21 W. Derks (UT), Improving concurrency and recovery in DBMS by exploiting semantics

2006 1 S. Angelov (TUE), Foundations of B2B Electronic Contracting
2 C. Chisalita (VU), Contextual issues in the design and use of IT in organizations
3 N. Christoph (UVA), The role of Metacognitive Skills in Learning to Solve Problems
4 M. Sabou (VU), Building Web Service Ontologies
5 C. Pierik (UU), Validation Techniques for Object-Oriented Proof Outlines
6 Z. Baida (VU), Software-aided service bundling
7 M. Smiljanic (UT), XML schema matching - balancing efficiency and effectiveness
8 E. Herder (UT), Forward, Back and Home Again - Analyzing User Behavior on the Web
9 M. Wahdan (UM), Automatic Formulation of the Auditor’s Opinion

192

10 R. Siebes (VU), Semantic Routing in Peer-to-Peer Systems
11 J. van Ruth (UT), Flattening Queries over Nested Data Types
12 B. Bongers (VU), Interactivation - towards an e-cology of people, our t-environment, and arts
13 H-J. Lebbink (UU), Dialogue and Decision Games for Information Exchanging Agents
14 J. Hoorn (VU), Software requirements: update, upgrade, redesign
15 R. Malik (UU), CONAN: Text Mining in the Biomedical Domain
16 C. Riggelsen (UU), Approximation Methods for Efficient Learning of Bayesian Networks
17 S. Nagata (UU), User Assistance for Multitasking with Interruptions on a Mobile Device
18 V. Zhizhkun (UVA), Graph transformation for Natural Language Processing
19 B. van Riemsdijk (UU), Cognitive Agent Programming: A Semantic Approach
20 M. Velikova (UvT), Monotone models for prediction in data mining
21 B. van Gils (RUN), Aptness on the Web
22 P. de Vrieze (RUN), Fundaments of Adaptive Personalisation
23 I. Juvina (UU), Development of Cognitive Model for Navigating on the Web
24 L. Hollink (VU), Semantic Annotation for Retrieval of Visual Resources
25 M. Drugan (UU), Conditional log-likelihood MDL and Evolutionary MCMC
26 V. Mihajlovic (UT), Score region algebra: a flexible framework for structured IR
27 S. Bocconi (CWI), Vox Populi: generating video documentaries from semantically annotated

media repositories
28 B. Sígũrbjørnsson (UVA), Focused Information Access using XML Element Retrieval

2007 1 K. Leune (UvT), Access Control and Service-Oriented Architectures
2 W. Teepe (RUG), Reconciling Information Exchange and Confidentiality: A Formal Approach
3 P. Mika (VU), Social Networks and the Semantic Web
4 J. van Diggelen (UU), Achieving Semantic Interoperability in Multi-agent Systems
5 B. Schermer (UL), Software Agents, Surveillance, and the Right to Privacy
6 G. Mishne (UVA), Applied Text Analytics for Blogs
7 N. Jovanovic (UT), To whom it may concern - addressee identification in face-to-face meetings
8 M. Hoogendoorn (VU), Modeling of Change in Multi-Agent Organizations
9 D. Mobach (VU), Agent-Based Mediated Service Negotiation
10 H. Aldewereld (UU), Autonomy vs. conformity: a perspective on norms and protocols
11 N. Stash (TUE), Incorporating cognitive learning styles in a adaptive hypermedia system
12 M. van Gerven (RUN), Bayesian Networks for Clinical Decision Support
13 R. Rienks (UT), Meetings in Smart Environments; Implications of Progressing Technology
14 N. Bergboer (UM), Context-Based Image Analysis
15 J. Lacroix (UM), NIM: a Situated Computational Memory Model
16 D. Grossi (UU), Designing Invisible Handcuffs
17 T. Charitos (UU), Reasoning with Dynamic Networks in Practice
18 B. Orriens (UvT), On the development an management of adaptive business collaborations
19 D. Levy (UM), Intimate relationships with artificial partners
20 S. Roijackers (UU), Customer configuration updating in a software supply network
21 K. Vermaas (UU), Fast diffusion and broadening use: A research on residential adoption and

usage of broadband internet in the Netherlands between 2001 and 2005
22 Z. Zlatev (UT), Goal-oriented design of value and process models from patterns
23 P. Barna (TUE), Specification of Application Logic in Web Information Systems
24 G. Ramírez Camps (CWI), Structural Features in XML Retrieval
25 J. Schalken (VU), Empirical Investigations in Software Process Improvement

2008 1 K. Boer-Sorbán (EUR), Agent-Based Simulation of Financial Markets
2 A. Sharpanskykh (VU), On computer-aided methods for modeling and analysis of organiza-

tions
3 V. Hollink (UVA), Optimizing hierarchical menus: a usage-based approach
4 A. de Keijzer (UT), Management of Uncertain Data - towards unattended integration
5 B. Mutschler (UT), Modeling and simulating causal dependencies from a cost perspective
6 A. Hommersom (RUN), On the Application of Formal Methods to Clinical Guidelines
7 P. van Rosmalen (OU), Supporting the tutor in the design and support of adaptive e-learning
8 J. Bolt (UU), Bayesian Networks: Aspects of Approximate Inference
9 C. van Nimwegen (UU), The paradox of the guided user: assistance can be counter-effective
10 W. Bosma (UT), Discourse oriented summarization
11 V. Kartseva (VU), Designing Controls for Network Organizations: A Value-Based Approach
12 J. Farkas (RUN), A Semiotically Oriented Cognitive Model of Knowledge Representation
13 C. Carraciolo (UVA), Topic Driven Access to Scientific Handbooks
14 A. van Bunningen (UT), Context-Aware Querying; Better Answers with Less Effort
15 M. van Otterlo (UT), The Logic of Adaptive Behavior
16 H. van Vugt (VU), Embodied agents from a user’s perspective
17 M. Op ’t Land (TUD), Applying Architecture and Ontology to Enterprises
18 G. de Croon (UM), Adaptive Active Vision
19 H. Rode (UT), From Document to Entity Retrieval
20 R. Arendsen (UVA), Geen bericht, goed bericht
21 K. Balog (UVA), People Search in the Enterprise
22 H. Koning (UU), Communication of IT-Architecture
23 S. Visscher (UU), Bayesian network models for ventilator-associated pneumonia
24 Z. Aleksovski (VU), Using background knowledge in ontology matching

193

SIKS Dissertation Series

25 G. Jonker (UU), Efficient and Equitable Exchange in Air Traffic Management
26 M. Huijbregts (UT), Segmentation, diarization and speech transcription
27 H. Vogten (OU), Design and Implementation Strategies for IMS Learning Design
28 I. Flesch (RUN), On the Use of Independence Relations in Bayesian Networks
29 D. Reidsma (UT), Annotations and Subjective Machines
30 W. van Atteveldt (VU), Semantic Network Analysis
31 L. Braun (UM), Pro-Active Medical Information Retrieval
32 T.H. Bui (UT), Toward affective dialogue management using markov decision processes
33 F. Terpstra (UVA), Scientific Workflow Design; theoretical and practical issues
34 J. De Knijf (UU), Studies in Frequent Tree Mining
35 B.T. Nielsen (UvT), Dendritic morphologies: function shapes structure

2009 1 R. Jurgelenaite (RUN), Symmetric Causal Independence Models
2 W.R. van Hage (VU), Evaluating Ontology-Alignment Techniques
3 H. Stol (UvT), A Framework for Evidence-based Policy Making Using IT
4 J. Nabukenya (RUN), Improving the Quality of Organisational Policy Making
5 S. Overbeek (RUN), Bridging Supply and Demand for Knowledge Intensive Tasks
6 M. Subianto (UU), Understanding Classification
7 R. Poppe (UT), Discriminative Vision-Based Recovery and Recognition of Human Motion
8 V. Nannen (VU), Evolutionary Agent-Based Policy Analysis in Dynamic Environments
9 B. Kanagwa (RUN), Design, Discovery and Construction of Service-oriented Systems
10 J.A.N. Wielemaker (UVA), Logic programming for knowledge-intensive applications
11 A. Boer (UVA), Legal Theory, Sources of Law & the Semantic Web
12 P. Massuthe (TUE, Humboldt-Universitaet zu Berlin), Operating Guidelines for Services
13 S. de Jong (UM), Fairness in Multi-Agent Systems
14 M. Korotkiy (VU), From ontology-enabled services to service-enabled ontologies
15 R. Hoekstra (UVA), Ontology Representation - Ontologies that Make Sense
16 F. Reul (UvT), New Architectures in Computer Chess
17 L. van der Maaten (UvT), Feature Extraction from Visual Data
18 F. Groffen (CWI), Armada, An Evolving Database System
19 V. Robu (CWI), Modeling prefs, strategy and collaboration in agent-mediated e-markets
20 B. van der Vecht (UU), Adjustable Autonomy: Controling Influences on Decision Making
21 S. Vanderlooy (UM), Ranking and Reliable Classification
22 P. Serdyukov (UT), Search For Expertise: Going beyond direct evidence
23 P. Hofgesang (VU), Modelling Web Usage in a Changing Environment
24 A. Heuvelink (VUA), Cognitive Models for Training Simulations
25 A. van Ballegooij (CWI), RAM: Array Database Management through Relational Mapping
26 F. Koch (UU), An Agent-Based Model for the Development of Intelligent Mobile Services
27 C. Glahn (OU), Contextual Support of social Engagement and Reflection on the Web
28 S. Evers (UT), Sensor Data Management with Probabilistic Models
29 S. Pokraev (UT), Model-Driven Semantic Integration of Service-Oriented Applications
30 M. Zukowski (CWI), Balancing vectorized query execution with bandwidth-optimized storage
31 S. Katrenko (UVA), A Closer Look at Learning Relations from Text
32 R. Farenhorst and R. de Boer (VU), Architectural Knowledge Management
33 K. Truong (UT), How Does Real Affect3 Recognition In Speech?
34 I. van de Weerd (UU), Advancing in Software Product Management
35 W. Koelewijn (UL), Privacy en Politiegegevens
36 M. Kalz (OUN), Placement Support for Learners in Learning Networks
37 H. Drachsler (OUN), Navigation Support for Learners in Informal Learning Networks
38 R. Vuorikari (OU), Tags and self-organisation
39 C. Stahl (TUE), Service Substitution – A Behavioral Approach Based on Petri Nets
40 S. Raaijmakers (UvT), Multinomial Language Learning
41 I. Berezhnyy (UvT), Digital Analysis of Paintings
42 T. Bogers (UvT), Recommender Systems for Social Bookmarking
43 V.N.L. Franqueira (UT), Finding Multi-step Attacks in Computer Networks
44 R.S. Tapia (UT), Assessing Business-IT Alignment in Networked Organizations
45 J. Vreeken (UU), Making Pattern Mining Useful

2010 1 M. van Leeuwen (UU), Patterns that Matter

194

	ps - cover - front.pdf
	ps - content - 16x24 cropped

