The Long and the Short of It

 summarising event sequences with serial episodesNikolaj Tatti \& Jilles Vreeken

Question of the day

How can we discover the key patterns from an event sequence?

Summarising Event Sequences

The ideal outcome of pattern mining

- patterns that show the structure of the data
- preferably a small set, without redundancy or noise

Frequent pattern mining does not achieve this

- pattern explosion \rightarrow overly many, overly redundant results

We pursue the ideal for serial episodes

- we want a group of patterns that summarise the data well
- we take a pattern set mining approach

Event sequences

Alphabet
Data D
one, or multiple
sequences multiple
sequences

$$
\{a, b, c, d, \ldots\}
$$

Event sequences

Alphabet $\Omega \quad\{a, b, c, d, \ldots\}$

Data D
one, or multiple sequences

Patterns
serial
episodes

'subsequences
allowing gaps'

Event sequences

Alphabet $\Omega \quad\{a, b, c, d, \ldots\}$

Data D
one, or multiple sequences

Patterns
serial
episodes

'subsequences
allowing gaps'

Summarising Event Sequences

We want to find good summaries.

Three important questions

1. how do we score a pattern-based summary?
2. how do we describe a sequence given a pattern set?
3. how do we find good pattern sets?

Summarising Event Sequences

We want to find good summaries.

Three important questions

1. how do we score a pattern-based summary?
2. how do we describe a sequence given a pattern set?
3. how do we find good pattern sets?

Scoring a Summary

We want models that generalise the data
and hence, we need a score that

- rewards models that identify real structure, and
- punishes redundancy and noise

No off-the-shelf score available for serial episodes

- e.g. no well-founded priors
- we can, however, make these goals concrete by MDL

MDL

The Minimum Description Length (MDL) principle

 given a set of models \mathcal{M}, the best model $M \in \mathcal{M}$ is that M that minimises$$
L(M)+L(D \mid M)
$$

in which
$L(M)$ is the length, in bits, of the description of M
$L(D \mid M)$ is the length, in bits, of the description of the data when encoded using M

MDL for Event Sequences

By MDL we define

> the optimal set of serial episodes as the set that describes the data most succinctly

To use MDL, we need

- a lossless encoding for our models,
- a lossless encoding for the data given a model

Models

As models we use code tables

- dictionaries of patterns and associated codes

Encoding Event Sequences

Encoding 1: using only singletons

```
Cp a b dd ca|d b a a b c
```


The length of the code X for pattern X

$$
L(\boxed{X})=-\log (p(\triangle))=-\log \left(\frac{u s g(X)}{\sum \operatorname{usg}(Y)}\right)
$$

The length of the code stream

$$
L\left(C_{p}\right)=\sum_{X \in C T} u s g(X) L(\triangle)
$$

Encoding Event Sequences

Data $D: \quad$| a | b | d | c | a | d | b | a | a | b | c |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Encoding 2: using patterns

Alignment: \quad| a | b | d | c | a | d | b | a | a | b | c |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Encoding Event Sequences

Encoding 2: using patterns

The length of a gap code $?$ for pattern X

$$
L(?)=-\log (p(? \mid D))
$$

and analogue for non-gap codes \square

Encoding Event Sequences

By which, the encoded size of D given $C T$ and C is

$$
L(D \mid C T)=L\left(C_{p} \mid C T\right)+L\left(C_{g} \mid C T\right)
$$

...skipping the details of $L(C T \mid C)$...

Then, our goal is to minimise

$$
L(C T, D)=L(C T \mid C)+L(D \mid C T)
$$

Summarising Event Sequences

We want to find good summaries.

Three important questions

1. how do we score a summary?
2. how do we describe a sequence given a pattern set?
3. how do we find good pattern sets?

How to Cover your String

There are many ways C to describe a sequence given a set of patterns. We are after the optimum.

or,

or,

a	b	q	c	q	b	p
$?$	$!$	$?$	$!$	$!$	$!$	

etc...

How to Cover your String

There are many ways C to describe a sequence given a set of patterns. We are after the optimum.

1. if we fix the cover, we can obtain the optimal code lengths
2. if we fix the code lengths, we can obtain the optimal cover by dynamic programming

We alternate these steps until convergence

How to Cover your String

How to Cover your String

Summarising Event Sequences

We want to find good summaries.

Three important questions

1. how do we score a summary?
2. how do we describe a sequence given a pattern set?
3. how do we find good pattern sets?

Mining Code Tables

There are very many possible pattern sets. We are after the optimum

However, the search space is huge, complex, and does not exhibit trivial structure

We propose two algorithms for mining code tables

- SQS-CANDS filters ordered lists of pre-mined candidates
- SQS-SEARCH mines good code tables directly from data

SQS-CANDIDATES

SQS-SEARCH

Experiments

- synthetic data
- real data
random HMM
text data
\checkmark no structure found structure recovered for interpretation

			SQS-CANDS		Sos-SEARCH$\|P\|$			
	\| ${ }^{\text {\| }}$	\|D		\|F		P\|		ΔL
Addresses	5295	56	15506	138	155	5k		
JMLR	3846	788	40879	563	580	30k		
Moby Dick	10277	1	22559	215	231	10k		

SQS-CANDIDATES

Compression improves with richer candidate sets i.e. lower support thresholds

Optimising our Score

Both strategies show good convergence SQS-Search dips due to batch-wise search

Selected Results

JMLR

support vector machine machine learning state [of the] art
data set
Bayesian network

Pres. Addresses

unit[ed] state[s] public econ. expenditur take oath equal right exercis power

Conclusions

Mining informative sets of patterns

- is an important aspect of exploratory data mining

SQS approximates the ideal for serial episodes

- SQS-CANDS filters a pre-mined candidate list
- SQS-Search mines good code tables directly from data

Future work includes

- richer data and pattern types
- applying SQS in real-world settings

Thank you!

Mining informative sets of patterns

- is an important aspect of exploratory data mining

SQS approximates the ideal for serial episodes

- SQS-CANDS filters a pre-mined candidate list
- SQS-Search mines good code tables directly from data

Future work includes

- richer data and pattern types
- applying SQS in real-world settings

