The Long and the Short of It

summarising event sequences with serial episodes

Nikolaj Tatti & Jilles Vreeken

Question of the day

How can we discover the key patterns from an event sequence?

Summarising Event Sequences

The ideal outcome of pattern mining

- patterns that show the structure of the data
- preferably a small set, without redundancy or noise

Frequent pattern mining does not achieve this

■ pattern explosion → overly many, overly redundant results

We pursue the ideal for serial episodes

- we want a group of patterns that summarise the data well
- we take a pattern set mining approach

Event sequences

Alphabet $\Omega \{a, b, c, d, \dots\}$

Data D

one, or multiple sequences a b d c a d b a a b c a d a b a b c { a b d c a d b a a b c, a b d c a d b, a b d c a d b, b d c a d b, a b d c a d b a a,...}

Event sequences

Alphabet Ω {a, b, c, d, ... } Data D one, or multiple sequences $\begin{cases} a, b, c, d, \dots \\ a b d c a d b a a b c \\ a b d c a d b a a b c, \\ a b d c a d b, \\ a b d c a d b a a, \dots \\ \end{cases}$

Patterns

serial episodes

'subsequences allowing gaps'

Event sequences

Alphabet Ω

 $\{a, b, c, d, \dots\}$

Data D

one, or multiple sequences

Patterns

serial episodes

'subsequences allowing gaps'

Summarising Event Sequences

We want to find good summaries.

Three important questions

- 1. how do we **score** a pattern-based summary?
- 2. how do we **describe** a sequence given a pattern set?
- 3. how do we **find** good pattern sets?

Summarising Event Sequences

We want to find good summaries.

Three important questions1. how do we score a pattern-based summary?

how do we describe a sequence given a pattern set?
how do we find good pattern sets?

Scoring a Summary

We want models that generalise the data

and hence, we need a score that

- rewards models that identify real structure, and
- punishes redundancy and noise

No off-the-shelf score available for serial episodes

- e.g. no well-founded priors
- we can, however, make these goals concrete by MDL

MDL

The Minimum Description Length (MDL) principle

given a set of models \mathcal{M} , the best model $M \in \mathcal{M}$ is that M that minimises

$$L(M) + L(D|M)$$

in which

L(M) is the length, in bits, of the description of ML(D|M) is the length, in bits, of the description of the data when encoded using M

(see, e.g., Rissanen 1978, 1983, Grünwald, 2007)

MDL for Event Sequences

By MDL we define

the optimal set of serial episodes as the set that describes the data most succinctly

To use MDL, we need

- a lossless encoding for our models,
- a lossless encoding for the data given a model

(for itemsets, see Siebes et al, 2006, Vreeken et al 2011)

As models we use code tables

dictionaries of patterns and associated codes

Encoding 1: using only singletons CT_1 : $a \stackrel{a}{=} b \stackrel{b}{=} c \stackrel{c}{=} c \stackrel{c}{=} c$

The length of the code \mathbf{X} for pattern X

$$L(\mathbf{X}) = -\log(p(\mathbf{X})) = -\log(\frac{usg(\mathbf{X})}{\sum usq(Y)})$$

d

 (\mathbf{V})

The length of the code stream

$$L(C_p) = \sum_{X \in CT} usg(X)L(\mathbf{Z})$$

Encoding 2: using patterns

The length of a gap code 🕐 for pattern X

$$L(\bigcirc) = -\log(p(\bigcirc) \mid \bigcirc))$$

and analogue for non-gap codes 🚺

By which, the encoded size of D given CT and C is $L(D \mid CT) = L(C_p \mid CT) + L(C_g \mid CT)$

...skipping the details of $L(CT \mid C)$...

Then, our goal is to minimise

 $L(CT, D) = L(CT \mid C) + L(D \mid CT)$

Summarising Event Sequences

We want to find good summaries.

Three important questions

1. how do we score a summary?

how do we describe a sequence given a pattern set?
how do we find good pattern sets?

There are many ways *C* to describe a sequence given a set of patterns. We are after the **optimum**.

CT: a a

d

C

abc

da

There are many ways *C* to describe a sequence given a set of patterns. We are after the **optimum**.

- if we fix the cover, we can obtain the optimal code lengths
- if we fix the code lengths, we can obtain the optimal cover by dynamic programming

We alternate these steps until convergence

Summarising Event Sequences

We want to find good summaries.

Three important questions1. how do we score a summary?2. how do we describe a sequence given a pattern set?3. how do we find good pattern sets?

Mining Code Tables

There are very many possible pattern sets. We are after the **optimum**

However, the search space is huge, complex, and does **not** exhibit trivial structure

We propose two algorithms for mining code tables

- **SQS-CANDS** filters ordered lists of pre-mined candidates
- **SQS-SEARCH** mines good code tables directly from data

SQS-CANDIDATES

SQS-SEARCH

Experiments

- synthetic data
- real data

random HMM text data no structure found
structure recovered
for interpretation

		Sqs-Cands		Sqs-Search		
	$ \Omega $	D	F	P	P	ΔL
Addresses	5 295	56	15 506	138	155	5k
JMLR	3 846	788	40 879	563	580	30k
Moby Dick	10 277	1	22 559	215	231	10k

(implementation available at http://adrem.ua.ac.be/sqs)

Compression improves with richer candidate sets i.e. lower support thresholds

Optimising our Score

Both strategies show good convergence SQS-SEARCH dips due to batch-wise search

Selected Results

JMLR

support vector machine machine learning state [of the] art data set Bayesian network

PRES. ADDRESSES

unit[ed] state[s] public econ. expenditur take oath equal right exercis power

(for SQS-SEARCH)

Conclusions

Mining informative sets of patterns

is an important aspect of exploratory data mining

Sqs approximates the ideal for serial episodes

- SQS-CANDS filters a pre-mined candidate list
- SQS-SEARCH mines good code tables directly from data

Future work includes

- richer data and pattern types
- applying SQs in real-world settings

(implementation available at http://adrem.ua.ac.be/sqs)

Thank you!

Mining informative sets of patterns

is an important aspect of exploratory data mining

Sqs approximates the ideal for serial episodes

- SQS-CANDS filters a pre-mined candidate list
- SQS-SEARCH mines good code tables directly from data

Future work includes

- richer data and pattern types
- applying SQs in real-world settings

(implementation available at http://adrem.ua.ac.be/sqs)